Skip to main content
Log in

A Novel Fluorescent Probe Based on Pyrazole-Pyrazoline for Fe (III) Ions Recognition

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Firstly, a novel pyrazole-pyrazoline fluorescent probe was developed and synthesized. The probe can be used to determine Fe3+ ions in a series of cations in tetrahydrofuran aqueous solution with high selectivity and high sensitivity. After the addition of iron ions, the fluorescence intensity is significantly reduced, Its structure was characterized by 1H NMR, 13C NMR and HR-ESI-MS. UV absorption spectra and Fluorescence spectroscopy were used to study the selective recognition of probe M on metal ions. The probe M can selectivity and sensitivity to distinguish the target ion from other ions through different fluorescence phenomena. In addition, the binding modes of M with Fe3+ were proved to be 1:1 stoichiometry in the complexes by Job’s plot, IR results. The combination of probe M and iron ions is 1:1, and the detection limit is 3.9 × 10−10 M. The binding mode and sensing mechanism of M with Fe3+ was verified by theoretical calculations using Gaussian 09 based on B3LYP/6-31G(d) basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. DeSilva AP, Gunaratne HQN, Gunnlaugsson T et al (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1514–1566

    Google Scholar 

  2. Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism Curr Opin. Chem Biol 3:200–206

    CAS  Google Scholar 

  3. Touati D (2000) Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6

    CAS  PubMed  Google Scholar 

  4. Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione iron and Parkinsons disease. Biochem Pharmacol 64(5):1037–1048

    CAS  PubMed  Google Scholar 

  5. Honda K, Casadesus G, Petersen RB et al (2004) Oxidative stress and redox-active iron in alzheimers disease. Ann N Y Acad Sci 1012(1):179–182

    CAS  PubMed  Google Scholar 

  6. Narayanaswanmy N, Govindaraju T (2012) Aldazine-based colorimetric sensors for Cu2+ and Fe3+. Chemical 161(1):304–310

    Google Scholar 

  7. Liang ZO, Wang CX, Yang JX, et.al. A highly selective colorimetric chemosensor for detecting the respective amounts of iron(I1) and iron (I1) irons in water. New J Chem 2007;31(6):906–910

  8. Gonzáles APS, Firmino MA, Nomura CS, Rocha FRP, Oliveira PV, Gaubeur I (2009) Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal Chim Acta 636(2):198–194

    PubMed  Google Scholar 

  9. Mashhadizadeh MH, Pesteh M, Talakesh M, Sheikhshoaie I, Ardakani MM, Karimi MA Solid phase extraction of copper (II) by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry. Spectrochimica Acta Part B Atomic Spectroscopy 2008;63(8):885–8, 888

  10. Liu J, Yu M, Wang XC, Zhang Z (2012) A highly selective colorimetric sensor for Hg2+ based on nitrophenyl-aminothiourea. Spectrochim Acta A 93(10):245–249

    CAS  Google Scholar 

  11. Gupta VK, Singh AK, Mergu N (2014) Antipyrine based schiff bases as turn-on fluorescent sensors for Al (III) ion. Electrochim Acta 117(4):405–412

    CAS  Google Scholar 

  12. Liu Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68(1):25–30

    CAS  PubMed  Google Scholar 

  13. Ferreira SLC, Queiroz AS, Fernandes MS, dos Santos HC (2002) Application of factorial designs and doehlert matrix in optimization of experimental variables associated with the preconcentration and determination of vanadium and copper in seawater by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B Atomic Spectroscopy 57(12):1939–1950

    Google Scholar 

  14. Tesfaldef ZO, Vanstaden JF, Stefan RI (2004) Sequential injecting spectrophotometric determination of irons as Fe(II) in multi-vitamin preparations using 1, 10-phenanthroline as complexing agent. Talanta 64(5):1189–1195

    Google Scholar 

  15. Gomes D, Segundo M, Lima J et al (2005) Spectrophotometric determination of iron and boron in soil extracts using a multi-syringe flow injecting system. Talanta 66(3):703–711

    CAS  PubMed  Google Scholar 

  16. Lunvongsa S, Oshima M, Motomizu S (2006) Determination of total and dissolved amount of iron in water samples using catalytic spectrophotometric flow injecting analysis. Talanta 68(3):969–973

    CAS  PubMed  Google Scholar 

  17. Mohadesi A, Taher MA. Voltammetric determination of cu(II) in naturalwaters and human hair at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode. Talanta 2007;72(1):95–0, 100

  18. Sahoo SK, Sharma D, Bera RK et al (2012) Iron (III) selective molecular and supramolecular fluorescent probes. Chem Soc Rev 41(21):7195–7227

    CAS  PubMed  Google Scholar 

  19. Levai A, Jeko J (2006) Synthesis of 1-Substituted 5-Aryl-3-styryl-2-pyrazolines and 3-Aryl-5-styryl-2-pyrazolines by the Reaction of Dibenzylideneacetones and E.E-Cinnamylideneacetophenones with Hydrazines. J Heterocyclic Chem 43:1303–1309

    CAS  Google Scholar 

  20. Wiley KH (1967) Pyrazles, Pyrazolines, Pyrazilidnes, Indazoles and Condensed rings. The Chemistry of Heterocyclic Compounds 20:180–188

    Google Scholar 

  21. Levai A (2002) Synthesis of 3-Aroyl-4-(3-chromony)-2-pyrazolines. J Heterocyclic Chem 39:1333–1336

    CAS  Google Scholar 

  22. Khali HZ, Yanni SA (1981) Synthesis of new Anilido-Pyrazoline and Isoxazoline Derivatines. J Indian Chem Soc 58:168–170

    Google Scholar 

  23. Rawal AA, Thakor VM, Shah NM (1963) Synthesis of some 1, 3,5-Triphenyipyrazolines and 3,5-Diphenyl-cyclohexen-1-ones. J Indian Chem Soc 40(4):323

    Google Scholar 

  24. Dhal PN, Acharya TE, Nayak A (1975) Studies on 1,3-Diaryl Pyrazolines and their derivatives. J Indian Chem Soc 52:1196–1198

    CAS  Google Scholar 

  25. Bhatia MS, Sood RK (1978) New heterocyclic ring containing phosphorus:synthesis of 4-Chloro-1,4-dihydro-2 H-naphth-[2,1-c][1,2] oxaphosphorin. Ind J Chem 16B:638–645

    CAS  Google Scholar 

  26. Turan-Zitouni G, Chevallet P, Kilic FS, Erol K (2000) Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity. Eur J Med Chem 35:635–641

    CAS  PubMed  Google Scholar 

  27. Erhan R, Mutlu A, Tayfun U, Dilek E (2001) Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur J Med Chem 36:539–543

    Google Scholar 

  28. Husain MI, Shukla S (1986) Synthesis & biological activity of 4-(3-Aryl-4-exo-2-thioxothia-zolidin-5-ylimino)-3-methyl-1-(N,N-disubstituted amino-methyl)pyrazolin-5-ones. Ind J Chem 25B:983–985

    CAS  Google Scholar 

  29. Orrego-Hernández J, Portilla J (2017) Synthesis of dicyanovinyl-substituted 1-(2-pyridyl) pyrazoles: design of a fluorescent chemosensor for selective recognition of cyanide. J Org Chem 82(24):13376–13385

    PubMed  Google Scholar 

  30. Ibnaouf KH, Elzupir AO, Ibrahem MA, Ali MKM, Al-Muhanna MK (2019) Optical characteristics and structural properties of 3-(p-Nitrophenyl)-5-phenyl-1H-pyrazole. J Electron Mater 48(2):861–866

    CAS  Google Scholar 

  31. Maliyappa MR, Keshavayya J, Mahanthappa M, Shivaraj Y, Basavarajappa KV (2020) 6-substituted benzothiazole based dispersed azo dyes having pyrazole moiety: synthesis, characterization, electrochemical and DFT studies. J Mol Struct 1199:126959

    CAS  Google Scholar 

  32. Orrego-Hernandez J, Portilla J (2017) Synthesis of Dicyanovinyl-substituted 1-(2-Pyridyl)pyrazoles: Design of a Fluorescent Chemosensor for selective recognition of cyanide. J Org Chem 82:13376–13385

    CAS  PubMed  Google Scholar 

  33. Wang CC, Zhang D, Huang XY, Ding P, Wang Z, Zhao Y, Ye Y (2014) A fluorescence ratiometric chemosensor for Fe3+ based on TBET and its application in living cells. Talanta 128:69–74

    CAS  PubMed  Google Scholar 

  34. Jin XD, Wang SF, Yin WZ, Xu T, Jiang Y, Liao Q, Xia X, Liu J (2017) A highly sensitive and selective fluorescence chemosensor for Fe3+ based on rhodamine and its application in vivo imagine. Sensors Actuators B 247:461–468

    CAS  Google Scholar 

  35. Bozkurt E, Arik M, Onagner Y (2015) A novel system for Fe3+ ion detection based on fluorescence resonance energy transfer. Sensors Actuators B 221:136–147

    CAS  Google Scholar 

  36. Zhao B, Liu T, Fang T et al (2017) A new selective chemosensors based on phenanthro[9,10-d] imidazole-coumarin with sequential“on-off-on”fluorescence response to Fe3+ and phosphate anions and its application in living cells. Sensors Actuators B 246:370–379

    CAS  Google Scholar 

  37. Li P, Zhang M, Sun XK, Guan S, Zhang G, Baumgarten M, Müllen K (2016) A dendrimer-based highly sensitive and selective fluorescence-quenching sensor for Fe3+ both in solution and as film. Biosens Bioelectron 85:785–791

    CAS  PubMed  Google Scholar 

  38. Sen S, Sarkar S, Chattopadhyay B, Moirangthem A, Basu A, Dhara K, Chattopadhyay P (2012) A ratiometric fluorescence chemosensor for iron: discrimination of Fe2+and Fe3+ and living cell application. Analyst 137:3335–3342

    CAS  PubMed  Google Scholar 

  39. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. J Phys Rev A 38:3098–3000

    CAS  Google Scholar 

  40. Becke AD (1993) Density-functional thermochemistry III the role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a function of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  42. Zhang TT, Wang FW, Li MM, Liu JT, Miao JY, Zhao BX (2013) A simple pyrazoline-based fluorescent probe for Zn2+ in aqueous solution and imaging in living neuron cells. Sensors Actuators B 186:755–760

    CAS  Google Scholar 

  43. Kasirajan G, Krishnaswamy V, Raju N, Mahalingam M, Sadasivam M, Palathurai Subramaniam M, Ramasamy S (2017) New pyrazolo-quinoline scaffold as a reversible colorimetric fluorescent probe for selective detection of Zn2+ ions and its imaging in live cells. Journal of Photochemistry and Photobiology A 341:136–145

    CAS  Google Scholar 

  44. Li MM, Wang FW, Wang XY, Zhang TT, Xu Y, Xiao Y, Miao JY, Zhao BX (2014) A new turn-on fluorescence probe for Zn2+ in aqueous solution and imaging application in living cells. Anal Chim Acta 826:77–83

    CAS  PubMed  Google Scholar 

  45. Mikata Y, Yamashita A, Kawamura A et al (2009) Bisquinoline-based fluorescent zinc sensors. Dalton Trans 19:3800–3806

    Google Scholar 

  46. Maity D, Govindaraju T (2011) Naphthaldehyde-urea/thiourea conjugates as turn-on fluorescent probes for Al3+ based on restricted C=N isomerization. Eur J Inorg Chem 36:5479–5485

    Google Scholar 

  47. Velmurugan K, Raman A, Easwaramoorthi S, Nandhakumar R (2014) Pyrene pyridine-conjugate as Ag selective fluorescent chemosensor. RSC Adv 4:35284–35289

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Peng Zhang or Yun-Shang Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YP., Li, XF., Yang, YS. et al. A Novel Fluorescent Probe Based on Pyrazole-Pyrazoline for Fe (III) Ions Recognition. J Fluoresc 31, 29–38 (2021). https://doi.org/10.1007/s10895-020-02632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02632-w

Keywords

Navigation