Skip to main content
Log in

Effect of Aryl-, Halogen-, and Ms-Aza-Substitution on the Luminescent Properties and Photostability of Difluoroborates of 2,2′-Dipyrrometenes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Boron(III) complexes with alkyl-, phenyl-, and halogen-substituted 2,2′-dipyrromethenes (BODIPY) and meso-aza-dipyrrometenes (ms-aza-BODIPY) were synthesized. The structure relationship of the obtained coordination compounds with their luminescent characteristics is analyzed. Arylated BODIPY, in contrast to alkyl-substituted analogs, is more sensitive to interparticle interactions with a solvent, causing a decrease in the quantum yield by up to 40%. The introduction of phenyl substituents into the BODIPY molecule shifts the first absorption band bathochromic, significantly (32–37 nm) increases the Stokes shift in the emission spectrum, but reduces the probability of the S0 → S1 electronic transition as compared to alkylated complexes. Replacing the methine carbon atom with nitrogen leads to quenching of ms-aza-BODIPY fluorescence compared to BODIPY up to 5–20%. The stability of 2,2′-dipyrromethenes difluoroborates to oxidative destruction under the influence of UV irradiation in cyclohexane solutions was evaluated. It has been shown that symmetric aryl substitution in pyrrole cycles of dipyrromethene significantly increases the photostability of the corresponding compounds as compared to alkyl-substituted analogs and is an effective method of obtaining boron (III) dipyrromethenates with practically useful properties. It has been established that the replacement of the methin ms-spacer of dipyrromethene by a nitrogen atom significantly reduces the photostability of ms-aza-dipyrromethenates of boron. Halogenation of β-positions of pyrrole cycles by a factor of 5–8 reduces the photostability of difluoroborates ms-aza-dipyrromethenes in comparison with a non-halogenated analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang J, Zhang L, Zhou Y, Acta M (2013) A highly selective fluorescent probe for the detection of palladium(II) ion in cells and aqueous media. Microchim Acta 180:211–217. https://doi.org/10.1007/s00604-012-0922-2

    Article  CAS  Google Scholar 

  2. Kim SB, Cho DG (2012) Hg(II)-selective fluorescent indicator: one-step synthesis. Eur J Org Chem 2012:2495–2498. https://doi.org/10.1002/ejoc.201200126

    Article  CAS  Google Scholar 

  3. Ran C, Xu X, Raymond SB (2009) Design, synthesis, and testing of Difluoroboron-Derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 31:15257–15261. https://doi.org/10.1021/ja9047043

    Article  CAS  Google Scholar 

  4. Gorman A, Killoran J, O’Shea C (2004) In vitro demonstration of the heavy-atom effect for photodynamic therapy. J Am Chem Soc 126:10619–10631. https://doi.org/10.1021/ja047649e

    Article  CAS  PubMed  Google Scholar 

  5. Awuah SG, Polreis J, Biradar V (2011) Singlet Oxygen Generation by Novel NIR BODIPY Dyes. You Org Lett 13:3884–3887. https://doi.org/10.1021/ol2014076;

    Article  CAS  PubMed  Google Scholar 

  6. Pang W, Zhang XF (2012) Modulating the singlet oxygen generation property of meso–β directly linked BODIPY dimers. Chem Сommun 48:5437–5439. https://doi.org/10.1039/C2CC30915G

  7. Lim S, Thivierge C, Nowak-Sliwinska P (2010) In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. Med Chem 53:2865–2874. https://doi.org/10.1021/jm901823u

    Article  CAS  Google Scholar 

  8. Lincoln R, Durantini Photochem AM (2017) Meso-Acetoxymethyl BODIPY dyes for photodynamic therapy: improved photostability of singlet oxygen photosensitizers. Photobiol Sci 16:178–184. https://doi.org/10.1039/c6pp00166a

    Article  CAS  Google Scholar 

  9. Duran-Sampedro G, Agarrabeitia AR, Garcia-Moreno I (2012) Chlorinated BODIPYs: surprisingly efficient and highly Photostable laser Dyes. Eur J Org Chem 2012:6335–6350. https://doi.org/10.1002/ejoc.201200946

    Article  CAS  Google Scholar 

  10. Trinh C, Kirlikovali K (2014) Symmetry-breaking charge transfer of visible light absorbing systems: zinc Dipyrrins. J Phys Chem 118:21834–21845. https://doi.org/10.1021/jp506855t

    Article  CAS  Google Scholar 

  11. Cui A, Peng X (2007) Synthesis, spectral properties and photostability of novel boron–dipyrromethene dyes. J Photochem Photobiol A Chem 186:85–92. https://doi.org/10.1016/j.jphotochem.2006.07.015

    Article  CAS  Google Scholar 

  12. Liras M, Pintado-Sierra M (2011) New BODIPY chromophores bound to polyhedral oligomeric silsesquioxanes (POSS) with improved thermo- and photostability. J Mater Chem 21:12803–12811. https://doi.org/10.1039/C1JM11261A

    Article  CAS  Google Scholar 

  13. Wittmershaus B, Skibicki J (2001) Spectral properties of single BODIPY Dyes in polystyrene microspheres and in solutions. J Fluoresc 11:119–128. https://doi.org/10.1023/A:1016629518660

    Article  CAS  Google Scholar 

  14. Nuraneeva EN, Guseva GB, Antina EV, Kuznetsova RT, Berezin MB, V’yugin AI (2016) Synthesis, spectral luminescent properties, and Photostability of Monoiodo- and Dibromo-substituted BF2-Dipyrrinates. Russ J Gen Chem 86:840–847. https://doi.org/10.1134/S1070363216040149

    Article  CAS  Google Scholar 

  15. Gupta M, Mula S, Tapan K (2017) Structure and solvent-induced tuning of laser property and photostability of a boradiazaindacene (BODIPY) dye. J Photochem Photobiol A Chem 349:162–170. https://doi.org/10.1016/j.jphotochem.2017.09.033

    Article  CAS  Google Scholar 

  16. Nuraneeva EN, Antina EV, Guseva GB, Berezin MB, V'yugin AI (2018) Effects of halogen substitution on the photostability and thermal degradation of boron(III), zinc(II) and cadmium(II) dipyrrinato complexes. Inorg Chim Acta 482:800–806. https://doi.org/10.1016/j.ica.2018.07.026

    Article  CAS  Google Scholar 

  17. Semejkin AS, Berezin MB, Chernova OM et al (2003) Interrelation of the structure and solvation characteristics of alkyl-substituted dipyrrolylmethenes, their oxa- and thia-analogs. Izv RAS Ser chemical 8:1712–1718

    Google Scholar 

  18. Berezin MB, Chernova OM, Pashanova NA et al (2001) The influence of functional substitution on the enthalpy characteristics of the solution of dipyrrolylmethenes. J Physical Chemistry 75:1242–1245

    Google Scholar 

  19. Antina EV, Guseva GB, Rumyantsev EV, Dudina NA (2009) Thermal properties of ligands, salts and metal complexes of linear oligopyrroles. Russ J Gen Chem 79:1900–1909. https://doi.org/10.1134/S1070363209090163

    Article  CAS  Google Scholar 

  20. Antina EV, Berezin MB, Dudina NA et al (2014) Synthesis, spectral-luminescent properties of B(III) and Zn(II) complexes with alkyl- and aryl-substituted dipyrrins and azadipyrrins. Russ J Inorg Chem 59:1187–1194. https://doi.org/10.7868/S0044457X1410002X

    Article  CAS  Google Scholar 

  21. Berezin MB, Semejkin AS (1999) E.V. Antina synthesis and physicochemical properties of alkyl-substituted dipyrrolylmetenes hydrobromides. General chemistry 69:2040–2047

    Google Scholar 

  22. Berezin MB, Semejkin AS (1993) Thermochemistry of substituted pyrroles. Russian Chem Bull 42:449–453

    Article  Google Scholar 

  23. Antina EV, Berezin MB, Dudina NA, Burkova SL, Nikonova AY (2014) Synthesis, spectral-luminescent properties of B(III) and Zn(II) complexes with alkyl- and aryl-substituted dipyrrins and azadipyrrins. Russ J Inorg Chem 59:1187–1194. https://doi.org/10.1134/S0036023614100027

    Article  CAS  Google Scholar 

  24. Dudina NA, Berezin MB, Semeikin AS, Antina EV (2015) Difluoroborates of phenyl-substituted Aza-Dipyrromethenes: preparation, spectral properties, and stability in solution. Russ J Gen Chem 85:2739–2742. https://doi.org/10.1134/S1070363215120130

    Article  CAS  Google Scholar 

  25. Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115–118. https://doi.org/10.1016/0009-2614(96)00838-X

    Article  CAS  Google Scholar 

  26. J.R. Lakowicz (ed.). Principles of fluorescence spectroscopy. Springer science & business media, 2013

  27. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358. https://doi.org/10.1002/chin.199509296

    Article  CAS  Google Scholar 

  28. Castaneda A, Zaballa E et al (2018) Tailoring the molecular skeleton of Aza-BODIPYs to design Photostable red-light-emitting laser Dyes. ChemPhotoChem 2:1–12. https://doi.org/10.1002/cptc.201800225

    Article  CAS  Google Scholar 

  29. Kuznetsova RT, Aksenova IV, Bashkirtsev DE, Prokopenko AA, Pomogaev VA, Antina EV, Berezin MB, Bumagina NA (2018) Photonics of coordination complexes of dipyrrins with p- and d-block elements for application in optical devices. J Photochem Photobiol A Chem 354:147–154. https://doi.org/10.1016/j.jphotochem.2017.08.068

    Article  CAS  Google Scholar 

  30. Zhao G-J, Han K-L (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45(3):404–413. https://doi.org/10.1021/ar200135h

    Article  CAS  PubMed  Google Scholar 

  31. Zhao G-J, Han K-L (2007) Early time hydrogen-bonding dynamics of Photoexcited Coumarin 102 in hydrogen-donating solvents: theoretical study. J Phys Chem A 111(13):2469–2474. https://doi.org/10.1021/jp068420j

    Article  CAS  PubMed  Google Scholar 

  32. Zhao G-J, Liu J-Y, Zhou L-C, Han K-L (2007) Site-selective Photoinduced Electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111:8940–8945. https://doi.org/10.1021/jp0734530

    Article  CAS  PubMed  Google Scholar 

  33. Ping C, Shuqing S, Yunfeng H, Zhiguo Q, Deshui Z (1999) Structure and solvent effect on the photostability of indolenine cyanine dyes. Dyes Pigments 41:227–231. https://doi.org/10.1016/S0143-7208(98)00088-6

    Article  Google Scholar 

  34. Kautsky Request permissions Η (1939) Quenching of luminescence by oxygen. Trans Faraday Soc 35:216–219

    Article  Google Scholar 

  35. Berezin BD (1981) Coordination compounds of porphyrins and phthalocyanines. J Wiley Publ: Toronto 314

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Yu. Kritskaya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kritskaya, A.Y., Berezin, M.B., Antina, E.V. et al. Effect of Aryl-, Halogen-, and Ms-Aza-Substitution on the Luminescent Properties and Photostability of Difluoroborates of 2,2′-Dipyrrometenes. J Fluoresc 29, 911–920 (2019). https://doi.org/10.1007/s10895-019-02403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02403-2

Keywords

Navigation