Skip to main content
Log in

Fluorescent Carbon Quantum Dots with Fe(III/II) Irons as Bridge for the Detection of Ascorbic Acid and H2O2

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nitrogen-sulfur co-doped carbon quantum dots (N, S-CQDs) with good photoluminescence properties were prepared by hydrothermal method using citric acid (CA) and methionine (Met) as precursors. Co-doping with N and S facilitates the electron transfer rate and coordination interaction between N,S-CQDs and Fe(III) ions which acts as a quencher of fluorescence. Based on a simple redox principle, a highly sensitive and selective method for the detection of ascorbic acid (AA) and H2O2 was successfully developed. The calibration curves obtained are linear for the current versus AA and H2O2 concentration over the range 50–500 μM and 10–140 μM, respectively. And the detection limits for AA and H2O2 are 4.2 μM and 1.9 μM, respectively. The quantitative analysis of AA and H2O2 in various juices and H2O2 disinfectant with Fe3+/CQDs or Fe2+/CQDs gave the recoveries of 87.8%–117.5% and 99.2%–106.4% with relative standard deviations (RSD) of 1.6–5.1% and 1.7–3.1%, respectively, showing satisfactory results for the determination of AA and H2O2 in actual application. The proposed strategy may provide a new pathway to developing inexpensive and sensitive way for the detection of various redox reaction–involved system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jing-Jing Liu Z-TC, Tang D-S, Wang Y-B, Long-Tian Kang J-NY (2015) Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sensors Actuators B Chem 212:214–219

    Article  CAS  Google Scholar 

  2. Meng H, Yang D, Tu Y, Yan J (2017) Turn-on fluorescence detection of ascorbic acid with gold nanolcusters. Talanta 165:346–350

    Article  CAS  PubMed  Google Scholar 

  3. Frajese GV, Benvenuto M, Fantini M, Ambrosin E, Sacchetti P, Masuelli L, Giganti MG, Modesti A, Bei R (2016) Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro. Oncol Lett 11(6):4224–4234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pournaghi-Azar MH, Razmi-Nerbin H, Hafezi B (2001) Amperometric determination of ascorbic acid in real samples using an aluminum electrode, modified with nickel Hexacyanoferrate films by simple Electroless dipping method. Electroanal 14(3):206–212

  5. Ntei Abudu JJM, Attaelmannan M, Levinson SS (2004) Vitamins in human arteriosclerosis with emphasis on vitamin C and vitamin E. Clin Chim Acta 339:11–25

    Article  CAS  PubMed  Google Scholar 

  6. May JM, Qu ZC (2005) Transport and intracellular accumulation of vitamin C in endothelial cells: relevance to collagen synthesis. Arch Biochem Biophy 434(1):178–186

    Article  CAS  Google Scholar 

  7. Xiaomin QIANQZ, Ying ZHANG aYT (2010) Separation/determination of flavonoids and ascorbic acid in rat serum and excrement by capillary electrophoresis with electrochemical detection. Anal Sci 26(5):557–560

  8. Khairy M, Mahmoud BG (2016) Copper oxide microstructures with hemisphere pineapple morphology for SelectiveAmperometric determination of vitamin C(L-ascorbic acid) in human fluids. Electroanal 28(10):2606–2612

  9. Lima DRS, Cossenza M, Garcia CG, Portugal CC, Marques FFC, Paes-de-Carvalho R, Pereira Netto AD (2016) Determination of ascorbic acid in the retina during chicken embryo development using high performance liquid chromatography and UV detection. Anal Methods 8:5441–5447

  10. Matsuoka Y, Yamato M, Yamasaki T, Mito F, Yamada K (2012) Rapid and convenient detection of ascorbic acid using a fluorescent nitroxide switch. Free Radical Bio Med 53(11):2112–2118

    Article  CAS  Google Scholar 

  11. Danyang Ji YD, Meng H, Lin Z, Huanga Z, Hu Y, Jianjun Li FY, Li Z (2018) A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3,3′,5,5′-tetramethylbenzidine. Sensors Actuators B Chem 256:512–519

    Article  CAS  Google Scholar 

  12. Nuo Duan SW, Dai S, Miao T, Jie Chen ZW (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182:917–923

    Article  CAS  Google Scholar 

  13. Matsuoka Y, Yamato M, Yamada K (2016) Fluorescence probe for the convenient and sensitive detection of ascorbic acid. J Clin Biochem Nutr 58:16–22

  14. Feng LL, Wu YX, Zhang DL, Hu XX, Zhang J, Wang P, Song ZL, Zhang XB, Tan W (2017) Near infrared graphene quantum dots-based two-photon Nanoprobe for direct bioimaging of endogenous ascorbic acid in living cells. Anal Chem 89(7):4077–4084

    Article  CAS  PubMed  Google Scholar 

  15. Tran Van Tam NBT, Kim HR, Chung JS, Choi WM (2014) One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sensors Actuators B Chem 202:568–573

    Article  CAS  Google Scholar 

  16. IGa PMC a, Yate b L, Zaera RT, Cabanero G, Grande HJ, Ruiz V (2016) Graphene quantum dot membranes as fluorescent sensing platforms for Cr (VI) detection. Carbon 109:658–665

    Article  CAS  Google Scholar 

  17. Li N, Than A, Wang X, Xu S, Sun L, Duan H, Xu C, Chen P (2016) Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano 10(3):3622–3629

    Article  CAS  PubMed  Google Scholar 

  18. Weng CI, Chang HT, Lin CH, Shen YW, Unnikrishnan B, Li YJ, Huang CC (2015) One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosens Bioelectron 68:1–6

    Article  CAS  PubMed  Google Scholar 

  19. He J, Zhang H, Zou J, Liu Y, Zhuang J, Xiao Y, Lei B (2016) Carbon dots-based fluorescent probe for "off-on" sensing of hg(II) and I. Biosens Bioelectron 79:531–535

    Article  CAS  PubMed  Google Scholar 

  20. Gong X, Liu Y, Yang Z, Shuang S, Zhang Z, Dong C (2017) An "on-off-on" fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Analy Chim Acta 968:85–96

    Article  CAS  Google Scholar 

  21. Zhisheng Wu MF, Chen X, Tang X (2016) N-dots as a photoluminescent probe for the rapid and selective detection of Hg2+ and ag+ in aqueous solution. J Mater Chem B 4:2086

    Article  CAS  Google Scholar 

  22. Sen Liao FZ, Zhao X, Yang H, Chen X (2018) A reusable P, N-doped carbon quantum dot fluorescent sensor for cobalt ion. Sensors Actuators B Chem 260:156–164

    Article  CAS  Google Scholar 

  23. Siriwardana K, Nettles CB 2nd, Vithanage BC, Zhou Y, Zou S, Zhang D (2016) On-resonance fluorescence, resonance Rayleigh scattering, and Ratiometric resonance synchronous spectroscopy of molecular- and quantum dot-fluorophores. Anal Chem 88(18):9199–9206

    Article  CAS  PubMed  Google Scholar 

  24. Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP (2012) Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6:5102–5110

    Article  CAS  PubMed  Google Scholar 

  25. Liu R, Wu D, Feng X, Mullen K (2011) Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133(39):15221–15223

    Article  CAS  PubMed  Google Scholar 

  26. Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK (2015) One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors Actuators B Chem 213:434–443

    Article  CAS  Google Scholar 

  27. Jiang K, Zhang L, Lu J, Xu C, Cai C, Lin H (2016) Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew Chem 55(25):7231–7235

    Article  CAS  Google Scholar 

  28. Dong Sun RB, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Sci Direct 64:424–434

    Google Scholar 

  29. DSa W-JN, Zhu R-H, Deng S-Y, Cosnier S, Zhang X-J (2016) Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L-ascorbic acid. Carbon 96:1034–1042

    Article  CAS  Google Scholar 

  30. Zhongqian Song FQ, Xu Y, Liu M, Cui L, Liu J (2016) Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 104:169–178

    Article  CAS  Google Scholar 

  31. Jiang K, Sun S, Zhang L, Wang Y, Cai C, Lin H (2015) Bright-yellow-emissive N-doped carbon dots: preparation, cellular imaging, and bifunctional sensing. ACS Appl Mater Inter 7(41):23231–23238

    Article  CAS  Google Scholar 

  32. Hou J, Wang W, Zhou T, Wang B, Li H, Ding L (2016) Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 8(21):11185–11193

    Article  CAS  PubMed  Google Scholar 

  33. Wei Li MZ, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energ Environ Sci 8:2916

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (No. 21571191 and No. 51674292) and Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety (2018TP1003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Jiang, X. Fluorescent Carbon Quantum Dots with Fe(III/II) Irons as Bridge for the Detection of Ascorbic Acid and H2O2. J Fluoresc 29, 769–777 (2019). https://doi.org/10.1007/s10895-019-02395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02395-z

Keywords

Navigation