Skip to main content

Advertisement

Log in

Photoluminescence Properties of Dy3+ Activated CaWO4 Nanophosphors: a Potential Single Phase near White Light Emitter

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A multicolor tunable CaWO4:xDy3+ nanophosphors have been synthesized via hydrothermal route. X-Ray Diffraction and Fourier transform infrared confirm the formation of CaWO4:Dy3+ nanophosphors. Transmission electron microscopy image and selected area electron diffraction (SAED) reveal the formation of nanosize and crystalline CaWO4:Dy3+. Dependence of energy transfer rate from WO42− to the activator (Dy3+) is observed from the photoluminescence studies. An enhancement of energy transfer efficiency from 36% to 90% is observed after annealing the as-prepared samples at 800 °C. The exchange type energy transfer mechanism is observed to be dominant in as-prepared samples while the electric dipole-dipole interaction is dominant in annealed samples. Variation in energy transfer rate from the host to Dy3+ activator ions leads to the tuning of color emission from this nanophosphor. A near white light emission could be achieved with 6 at.% Dy3+ doped CaWO4 annealed at 800 °C with x = 0.310 and y = 0.327.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh NS, Sahu NK, Bahadur D (2014) Multicolor tuning and white light emission from lanthanide doped YPVO4 nanorods: energy transfer studies. J Mater Chem C 2:548–555

    Article  CAS  Google Scholar 

  2. Pradal N, Chadeyron G, Potdevin A, Deschamps Y, Mahiou R (2013) Elaboration and optimization of Ce-doped Y3Al5O12 nanopowder dispersions. J Eur Ceram Soc 33:1935–1945

    Article  CAS  Google Scholar 

  3. Khanna A, Dutta PS (2012) CaWO4: Eu3+, Dy3+, Tb3+ phosphor crystals for solid-state lighting applications. ECS Trans 41(37):39–48

    Article  CAS  Google Scholar 

  4. Varun S, Kalra M, Gandhi M (2015) White light emission through downconversion of terbium and europium doped CeF3 nanophosphors. J Fluoresc 25(5):1501–1505

    Article  CAS  PubMed  Google Scholar 

  5. Smet PF, Korthout K, Haecke JEV, Poelman D (2007) Using rare earth doped thiosilicate phosphors in white light emitting LEDs: towards low colour temperature and high colour rendering. Mater Sci Eng B 146:264–268

    Article  CAS  Google Scholar 

  6. Kim JS, Jeon PE, Choi JC, Park HL, Muo SI, Kim GC (2004) Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor. Appl Phys Lett 84(15):2931–2933

    Article  CAS  Google Scholar 

  7. Wangkhem R, Yaba T, Singh NS, Ningthoujam RS (2018) Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: energy transfer studies. J Appl Phys 123:124303

    Article  CAS  Google Scholar 

  8. Sato Y, Takahashi N, Sato S (1996) Full-color fluorescent display devices using a near-UV light-emitting diode. Jpn J Appl Phys 35:838–839

    Article  Google Scholar 

  9. Shang M, Li C, Lin J (2014) How to produce white light in a single-phase host? Chem Soc Rev 43:1372–1386

    Article  CAS  PubMed  Google Scholar 

  10. Liu B, Kong L, Shi C (2007) White-light long-lasting phosphor Sr2MgSi2O7:Dy3+. J Lumin 122-123:121–124

    Article  CAS  Google Scholar 

  11. Liu B, Shi C, Qi Z (2005) Potential white-light long-lasting phosphor: Dy3+ −doped aluminate. Appl Phys Lett 86:191111

    Article  CAS  Google Scholar 

  12. Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater Sci Eng R 71:1–34

    Article  CAS  Google Scholar 

  13. Nair GB, Dhoble SJ (2017) White light emitting MZr4(PO4)6:Dy3+ (M = ca, Sr, Ba) phosphors for WLEDs. J Fluoresc 27(2):575–585

    Article  CAS  PubMed  Google Scholar 

  14. Tanaka K, Miyajima T, Shivai N, Zhang Q, Nakata R (1995) Laser photochemical ablation of CdWO4 studied with the time-of-flight mass spectrometric technique. J Appl Phys 77(12):6581–6587

    Article  CAS  Google Scholar 

  15. Wang H, Medina FD, Zhou YD, Zhang QN (1992) Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals. Phys Rev B 45(18):10356–10362

    Article  CAS  Google Scholar 

  16. Basu S, Naidu BS, Viswanadh B, Sudarson V, Jha SN, Bhattacharyya D, Vatsa RK (2014) Nature of WO4 tetrahedra in blue light emitting CaWO4 probed through the EXAFS technique. RSC Adv 4:15606–15612

    Article  CAS  Google Scholar 

  17. Grasser R, Scharmann A, Strack KR (1982) On the intrinsic nature of the blue luminescence in CaWO4. J Lumin 27:263–272

    Article  CAS  Google Scholar 

  18. Mv S, Ciemniak C, Erb A, Fv F, Gütlein A, Lanfranchi J-C, Lepelmeier J, Münster A, Potzel W, Roth S, Strauss R, Thalhammer U, Wawoczny S, Willers M, Zöller A (2012) Influence of annealing on the optical and scintillation properties of CaWO4 single crystals. Opt Mater 34:1843–1848

    Article  CAS  Google Scholar 

  19. Kang F, Peng M (2014) A new study on the energy transfer in the color-tunable phosphor CaWO4:bi. Dalton Trans 43:277–284

    Article  CAS  PubMed  Google Scholar 

  20. Treadaway MJ, Powell RC (1974) Luminescence of calcium tungstate crystals. J Chem Phys 61(10):4003–4011

    Article  CAS  Google Scholar 

  21. Feldmann C, Justel T, Ronda CR, Schmidt PJ (2003) Inorganic luminescent materials: 100 years of research and application. Adv Funct Mater 13(7):511–516

    Article  CAS  Google Scholar 

  22. Hoppe HA (2009) Recent developments in the field of inorganic phosphors. Angew Chem Int Ed 48:3572–3582

    Article  CAS  Google Scholar 

  23. Treadaway MJ, Powell RC (1975) Energy transfer in samarium-doped calcium tungstate crystals. Phys Rev B 11(2):862–874

    Article  CAS  Google Scholar 

  24. Su Y, Li L, Li G (2009) Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and ln3+ (Ln = Tb, Sm, Dy, Eu). J Mater Chem 19:2316–2322

    Article  CAS  Google Scholar 

  25. Du P, Bharat LK, Guan XY, Yu JS (2015) Synthesis and luminescence properties of color-tunable Dy3+-activated CaWO4 phosphors. J Appl Phys 117:083112

    Article  CAS  Google Scholar 

  26. Sharma KG, Singh NS, Devi YR, Singh NR, Singh SD (2013) Effects of annealing on luminescence of CaWO4:Eu3+ nanoparticles and its thermoluminescence study. J Alloys Compd 556:94–101

    Article  CAS  Google Scholar 

  27. Liao J, Qiu B, Wen H, You W (2009) Photoluminescence green in microspheres of CaWO4:Tb3+ processed in conventional hydrothermal. Opt Mater 31:1513–1516

    Article  CAS  Google Scholar 

  28. Singh LR, Ningthoujam RS, Singh NS, Singh SD (2009) Probing Dy3+ ions on the surface of nanocrystalline YVO4: luminescence study. Opt Mater 32:286–292

    Article  CAS  Google Scholar 

  29. Zhang Y, Gong W, Yu J, Pang H, Song Q, Ning G (2015) A new single-phase white-light-emitting CaWO4:Dy3+ phosphor: synthesis, luminescence and energy transfer. RSC Adv 5:62527–62533

    Article  CAS  Google Scholar 

  30. Xie W, Liu G, Dong X, Wang J, Yu W (2016) Doping Eu3+/Sm3+ into CaWO4:Tm3+, Dy3+ phosphors and their luminescent properties, tunable color and energy transfer. RSC Adv 6:26239–26246

    Article  CAS  Google Scholar 

  31. Sharma KG, Singh NR (2013) Synthesis and luminescence properties of CaMO4:Dy3+ (M = W, Mo) nanoparticles prepared via an ethylene glycol route. New J Chem 37:2784–2791

    Article  CAS  Google Scholar 

  32. Du C, Lang F, Su Y, Liu Z (2013) Low temperature nanocasting synthesis of lanthanide ions (ln = Tb, Eu, Dy) doped CaWO4 mesoporous structure with efficiently luminescent properties. J Colloid Interface Sci 394:94–99

    Article  CAS  PubMed  Google Scholar 

  33. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    Article  CAS  Google Scholar 

  34. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  35. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44:17883–17905

    Article  CAS  PubMed  Google Scholar 

  36. Dhumale VA, Gangwar RK, Datar SS, Sharma RB (2012) Reversible aggregation control of polyvinylpyrrolidone capped gold nanoparticles as a function of Ph. Mater. Express 2(4):311–318

    Article  CAS  Google Scholar 

  37. Omkaram I, Buddhudu S (2009) Photoluminescence properties of MgAl2O4:Dy3+ powder phosphor. Opt Mater 32:8–11

    Article  CAS  Google Scholar 

  38. Singh NS, Ningthoujam RS, Luwang MN, Singh SD, Vasta RK (2009) Luminescence, lifetime and quantum yield studies of YVO4:Ln3+ (Ln3+ = Dy3+, Eu3+) nanoparticles: concentration and annealing effects. Chem Phys Lett 480:237–242

    Article  CAS  Google Scholar 

  39. Nayar R, Tamboli S, Sahu AK, Nayar V, Dhoble SJ (2017) Synthesis and luminescence characterization of LaBO3:Dy3+ phosphor for stress sensing application. J Fluoresc 27(1):251–261

    Article  CAS  PubMed  Google Scholar 

  40. Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Li MS (2012) Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. CrystEngComm 14:853–868

    Article  CAS  Google Scholar 

  41. Hou Z, Li C, Yang J, Lian H, Yang P, Chai R, Chang Z, Lin J (2009) One-dimensional CaWO4 and CaWO4:Tb3+ nanowires and nanotubes: electrospinning preparation and luminescent properties. J Mater Chem 19:2737–2746

    Article  CAS  Google Scholar 

  42. Tian Y, Chen B, Tian B, Hua R, Sun J, Cheng L, Zhong H, Li X, Zhang J, Zheng Y, Yu T, Huang L, Meng Q (2011) Concentration-dependent luminescence and energy transfer of flower-like Y2(MoO4)3:Dy3+ phosphor. J Alloys Compd 509:6096–6101

    Article  CAS  Google Scholar 

  43. Jiao M, Jia Y, Lu W, Lv W, Zhao Q, Shao B, You H (2014) Sr3GdNa(PO4)3F:Eu2+,Mn2+: a potential color tunable phosphor for white LEDs. J Mater Chem C 2:90–97

    Article  CAS  Google Scholar 

  44. Zhang Q, Meng Q, Sun W (2013) The concentration dependence of luminescent properties for Eu3+ doped CaWO4 micron spherical phosphors. Opt Mater 35:915–922

    Article  CAS  Google Scholar 

  45. Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  46. Blasse G, Grabmaier BC (1994) Luminescent Materials, 1st edn. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  47. Smith T, Guild J (1931–32) The C.I.E. colorimetric standards and their use. Trans. Opt. Soc 33:73–134

Download references

Acknowledgments

Authors thank Science & Engineering Research Board (DST), New Delhi, for financial support (EMR Project No. EMR/2014/001211). T. Yaba thanks UGC, New Delhi for financial support. Authors thank SAIF, NEHU, Shillong for TEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shanta Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaba, T., Wangkhem, R. & Shanta Singh, N. Photoluminescence Properties of Dy3+ Activated CaWO4 Nanophosphors: a Potential Single Phase near White Light Emitter. J Fluoresc 29, 435–443 (2019). https://doi.org/10.1007/s10895-019-02352-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02352-w

Keywords

Navigation