Skip to main content

Advertisement

Log in

Total Fluorescence Fingerprinting of Pesticides: A Reliable Approach for Continuous Monitoring of Soils and Waters

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The present work relates to the creation/extension of a database of Total Excitation-Emission and Total Synchronous Fluorescence Matrices (TEEMs and TSFMs) along with optimal Synchronous Fluorescence Spectra (SFS) to fingerprint pesticides widely used in Morocco. This spectrometric multi-component fingerprinting may permit the direct detection of pesticides persisting in soil or water. The objective of the current investigation is to detect four pesticide remains in agricultural soils by applying the spectrometric fingerprinting results. They are the commercial: i) insecticide Axlera 5G (carbamate), ii) fungicide Orsalis 5% SC (triazole), iii) insecticide Force 0,5 G (pyrethrinoid) and iv) insecticide Proclaim 05 SG (non-assigned). The agricultural plantations monitored are located in the great agricultural Doukkala region at the western Atlantic side of Morocco, where these chemicals are in large sale and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ben Aakame R, Fekhaoui M, Elabidi A, Dussauze J, Laghzizal M, Saoiabi A (2014) Groundwater contamination by pesticides and metals in agricultural areas of the northwest of Morocco and health hazard. IOSR J Environ Sci, Toxicol Food Technol 8:68–71

    Article  Google Scholar 

  2. Fekkoul H (2013) Groundwater contamination by nitrates, salinity and pesticides: case of the unconfined aquifer of triffa plain (eastern Morocco). Rev Mar Sci Agron Vét 2:12–36

    Google Scholar 

  3. Rochdi M, El Abidi A, El Kharrim K, Belghyti D (2014) Epidémiologie des intoxications humaines mortelles par l’Endosulfan au Maroc. Science Lib Editions Mersenne. http://www.sciencelib.fr/IMG//pdf/Rochdi_et_al-_2014-2.pdf. Accessed 10 April 2017

  4. El Khaddam S, Idrissi M, Achour S, Khadmaoui AE, Hadrya F, Soulaymani A, Soulaymani-Bencheikh R (2013) Acute pesticide poisoning in Tadla-Azilal region in Morocco: evolution and risk factors. Int J Innovation Appl Stud 3:552–559

    CAS  Google Scholar 

  5. Foudeil S, Hassoun H, Lamhasni T, Ait Lyazidi S, Benyaich F, Haddad M, Choukrad M, Boughdad A, Bounakhla M, Bounouira H, RMBO D, Cachada A, Duarte AC (2015) Catalog of total excitation–emission and total synchronous fluorescence maps with synchronous fluorescence spectra of homologated fluorescent pesticides in large use in Morocco: development of a spectrometric low cost and direct analysis as an alert method in case of massive contamination of soils and waters by fluorescent pesticides. Environ Sci Pollut Res 22:6766–6777. doi:10.1007/s11356–014–3807-6

    Article  CAS  Google Scholar 

  6. Origin Pro v8.0724 (2007) Origin lab corporation, Northhampton, MA

  7. Rubio L, Ortiz MC, Sarabia LA (2014) Identification and quantification of carbamate pesticides in dried lime tree flowers by means of excitation-emission molecular fluorescence and parallel factor analysis when quenching effect exists. Anal Chim Acta 820:9–22. doi:10.1016/j.aca.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  8. Andrade-Eiroa Á, Canle M, Cerdá V (2013) Environmental applications of excitation-emission spectrofluorimetry: an in-depth review I. Appl Spectrosc Rev 48:1–49. doi:10.1080/05704928.2012.692104

    Article  CAS  Google Scholar 

  9. Carstea EM (2012) Fluorescence spectroscopy as a potential tool for in-situ monitoring of dissolved organic matter in surface water systems. In: Balkis N (ed) Water pollution, InTech, Rijeka, pp 47–68

  10. Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346. doi:10.1016/0304-4203(95)00062-3

    Article  CAS  Google Scholar 

  11. Coble PG, Green SA, Blough NV, Gagosian RB (1990) Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348:432–435. doi:10.1038/348432a0

    Article  CAS  Google Scholar 

  12. Ghervase L, Ioja C, Carstea EM, Niculita L, Savastru D, Pavelescu G, Vanau G (2011) Evaluation of lentic ecosystems from Bucharest City. Int J Energy Environ 5:183–192

    Google Scholar 

  13. Parlanti E, Wörz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781. doi:10.1016/S0146-6380(00)00124-8

    Article  CAS  Google Scholar 

  14. Tedetti M, Charrière B, Bricaud A, Para J, Raimbault P, Sempéré R (2010) Distribution of normalized water-leaving radiances at UV and visible wave bands in relation with chlorophyll a and colored detrital matter content in the southeast Pacific. J Geophys Res 115:C02010. doi:10.1029/2009JC005289

    Article  Google Scholar 

  15. Markechová D, Tomková M, Sádecká J (2013) Fluorescence excitation-emission matrix spectroscopy and parallel factor analysis in drinking water treatment: a review. Pol J Environ Stud 22:1289–1295

  16. Ferretto N, Tedetti M, Guigue C, Mounier S, Redon R, Goutx M (2014) Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation–emission matrices and parallel factor analysis. Chemosphere 107:344–353. doi:10.1016/j.chemosphere.2013.12.087

    Article  CAS  PubMed  Google Scholar 

  17. Glaser LC (1999) Organophosphorus and Carbamate pesticides. In: Friend M and Franson JC (eds) Field manual of wildlife diseases: general field procedures and diseases of birds, U.S. Fish and Wildlife Service, Reston, VA, pp 287–293

  18. Sircu R, Pinzaru I, Opopol N, Scurtu R (2015) Health risk related to the intake of pesticides in the republic of Moldova. Int J Adv Res 3:628–633

    Google Scholar 

  19. Guo W, Engelman BJ, Haywood TL, Blok NB, Beaudoin DS, Obare SO (2011) Dual fluorescence and electrochemical detection of the organophosphorus pesticides-ethion, malathion and fenthion. Talanta 87:276–283. doi:10.1016/j.talanta.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  20. Tankiewicz M, Fenik J, Biziuk M (2010) Determination of organophosphorus and organonitrogen pesticides in water samples. TrAC Trends Anal Chem 29:1050–1063. doi: 10.1016/j.trac.2010.05.008

  21. Cha ES, Jeong M, Lee WJ (2014) Agricultural pesticide usage and prioritization in South Korea. J Agromedicine 19:281–293. doi:10.1080/1059924X.2014.917349

    Article  PubMed  Google Scholar 

  22. FAO (Food and Agriculture Organization of the United Nations) (1999) Guidelines for the management of small quantities of unwanted and obsolete pesticides. FAO. http://www.fao.org/fileadmin/user_upload/obsolete_pesticides/docs/small_qties.pdf. Accessed 13 July 2016

  23. FAO (Food and Agriculture Organization of the United Nations) (1995) Prevention and disposal of obsolete and unwanted pesticides stocks in Africa and the near east. FAO. http://www.fao.org/docrep/W8419E/W8419e00.htm. Accessed 13 July 2016

  24. Carullo P, Cetrangolo GP, Mandrich L, Manco G, Febbraio F (2015) Fluorescence spectroscopy approaches for the development of a real-time organophosphate detection system using an enzymatic sensor. Sensors 15:3932–3951. doi: 10.3390/s150203932

  25. John H, Worek F, Thiermann H (2008) LC-MS-based procedures for monitoring of toxic organophosphorus compounds and verification of pesticide and nerve agent poisoning. Anal Bioanal Chem 391:97–116. doi:10.1007/s00216-008-1925-z

    Article  CAS  PubMed  Google Scholar 

  26. Marco MP, Gee S, Hammock BD (1995) Immunochemical techniques for environmental analysis I. Immunosensors. TrAC. Trends Anal Chem 14:341–350. doi:10.1016/0165-9936(95)97062-6

    CAS  Google Scholar 

  27. Zhao W, Ge P-Y, Xu J-J, Chen H-Y (2009) Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetyl cholinesterase-inhibition biosensor. Environ Sci Technol 43:6724–6729. doi:10.1021/es900841n

    Article  CAS  PubMed  Google Scholar 

  28. Zheng Z, Zhou Y, Li X, Liu S, Tang Z (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetyl cholinesterase and CdTe quantum dots. Biosens Bioelectron 26:3081–3085. doi:10.1016/j.bios.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  29. RIKILT – Institute of Food Safety (2010) Cumulative exposure assessment of Triazole pesticides. EFSA J. doi:10.2903/sp.efsa.2010.EN-40

    Google Scholar 

  30. Fishel FM (2014) Pesticide toxicity profile: synthetic Pyrethroid pesticides. UF/IFAS Extension. http://edis.ifas.ufl.edu/pdffiles/PI/PI09100.pdf. Accessed 09 June 2016

  31. Savage S (2015) A closer look at organic pesticides in California. Applied Mythology blogspot. http://appliedmythology.blogspot.com/2015/09/a-closer-look-at-organic-pesticides-in.html. Accessed 26 June 2016

  32. Zhao H (2011) Analysis of organic matter and its properties in the natural environment with 3D fluorescence spectroscopy treated by PARAFAC. Dissertation, Université du Sud Toulon Var (in French)

  33. Luciani X, Mounier S, Paraquetti HH, Redon R, Lucas Y, Bois A, Lacerda LD, Raynaud M, Ripert M (2008) Tracing of dissolved organic matter from the Sepetiba Bay (Brazil) by PARAFAC analysis of total luminescence matrices. Mar Environ Res 65:148–157. doi:10.1016/j.marenvres.2007.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for the work was provided by the National Center for Scientific and Technical Research (CNRST) [grant number RS12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadia Ait Lyazidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassoun, H., Lamhasni, T., Foudeil, S. et al. Total Fluorescence Fingerprinting of Pesticides: A Reliable Approach for Continuous Monitoring of Soils and Waters. J Fluoresc 27, 1633–1642 (2017). https://doi.org/10.1007/s10895-017-2100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2100-8

Keywords

Navigation