Skip to main content
Log in

Synthesis of Naked-eye Detectable Fluorescent 2H-chromen-2-One 2, 6-Dicyanoanilines: Effect of Substituents and pH on Its Luminous Behavior

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A variety of new coumarin derivatives containing C-4 bridged 2,6-dicyanoanilines (4a-4d) were synthesized via multicomponent one pot approach. These novel sensors were characterized by spectral analysis and a series of pH sensing fluorescence studies were performed, the results indicating that the sensors are highly selective and more effective at various pH. The fluorescence colour changes at different pH could be directly detected by naked eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Suzuki Y, Yokoyama K (2015) Development of functional fluorescent molecular probes for the detection of biological substances. Biosensors (Basel) 5:337–363

    Article  CAS  Google Scholar 

  2. Xiao-Xiang Z, Wang Z, Yue X, Ying M, Dale OK, Chen X (2013) pH-sensitive fluorescent dyes: are they really pH-sensitive in cells? Mol Pharm 10:1910–1917

    Article  Google Scholar 

  3. Desai AS, Chauhan VM, Johnston APR, Esler T, Aylott JW (2013) Fluorescent nanosensors for intracellular measurements: synthesis, characterization, calibration, and measurement. Front Physiol 4:401

    Article  PubMed  Google Scholar 

  4. Korostynska O, Arshak K, Gill E, Arshak A (2007) Review on state-of-the-art in polymer based pH sensors. Sensors (Basel) 7:3027–3042

    Article  CAS  Google Scholar 

  5. Dybko A, Wroblewski W, Rozniecka E, Pozniak K, Maciejewski J, Romaniuk R, Brzozka Z (1998) Assessment of water quality based on multiparameter fiber optic probe. Sens Actuators B Chem 51:208–213

    Article  CAS  Google Scholar 

  6. Schirrmann M, Gebbers R, Kramer E, Seidel J (2011) Soil pH mapping with an on-the-go sensor. Sensors 11:573–5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bernard V, Berberan-Santos MN. Molecular fluorescence: principles and applications. Wiley doi: 10.1002/9783527650002

  8. Lakowicz JR. Principles of fluorescence spectroscopy. Springer doi: 10.1007/978-0-387-46312-46314

  9. Wu J, Deng A, Jiang W, Tian R, Shen Y (2017) Synthesis and in vitro evaluation of pH-sensitive magnetic nanocomposites as methotrexate delivery system for targeted cancer therapy. Mater Sci Eng C 71:132–140

    Article  CAS  Google Scholar 

  10. Borate BH, Kudale SA, Agalave GS (2012) Synthesis of substituted 2,6-Dicyanoanilines and related compounds-a review. Org Prep Proc Int 44:467–521

    Article  CAS  Google Scholar 

  11. Cui SL, Lin XF, Wang YG (2005) Parallel synthesis of strongly fluorescent polysubstituted 2,6-dicyanoanilines via microwave-promoted multicomponent reaction. J Org Chem 70:2866–2869

    Article  CAS  PubMed  Google Scholar 

  12. Yalcina E, Kutlua CY, Korkmaza V, Sahinb E, Seferoglua Z (2015) 2,6-Dicyanoaniline based donor-acceptor compounds: the facile synthesis of fluorescent 3,5-diaryl/hetaryl-2,6-dicyanoanilines. ARKIVOC 5:202–218

    Google Scholar 

  13. Albinsson B, Mattias PE, Pettersson K, Winters MU (2007) Electron and energy transfer in donor–acceptor systems with conjugated molecular bridges. Phys Chem Chem Phys 9:5847–5864

    Article  CAS  PubMed  Google Scholar 

  14. Bando P, Martin N, Segura JL, Seoane C (1994) Single-component donor-acceptor organic semiconductors derived from TCNQ. J Org Chem 59:4618–4629

    Article  CAS  Google Scholar 

  15. Chu CW, Ouyang J, Tseng JH, Yang Y (2005) Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices. Adv Mate 17:1440–1443

    Article  CAS  Google Scholar 

  16. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York, p 280

    Book  Google Scholar 

  17. Valeur B (2001) Molecular fluorescence: Principles and Aplications. Wiley-Verlag Chemie GmbH, Weinheim, p 79

    Book  Google Scholar 

  18. de Prasanna SA, Gunaratante HQN, Gunnlaugsson TH, Huxley AJM, Mc Coy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  Google Scholar 

  19. de Prasanna SA, Vance TP, West MES, Wright GD (2008) Bright molecules with sense, logic, numeracy and utility. Org Biomol Chem 6:2468–2481

    Article  Google Scholar 

  20. Soutar I (1991) The application of luminescence technique in polymer science. Polym Int 26:35–49

    Article  CAS  Google Scholar 

  21. Morawetz H (1999) On the versatility of fluorescence technique in polymer research. J Polym Sci A Polym Chem 37:1725–1735

    Article  CAS  Google Scholar 

  22. Sarker AM, Kaneko Y, Neckers DC (1998) Photochemistry and photophysics of novel photoinitiators: N,N,N-Tributyl-N-(4-methylene-7-methoxycoumarin) ammonium borates. J Photochem Photobiol 117:67–74

    Article  CAS  Google Scholar 

  23. Acceta R, Corradini R, Marcelli R (2011) Enantioselective sensing by luminescence. Top Curr Chem 300:175–216

    Article  Google Scholar 

  24. Mariusz T, Kim D, Singha S, Krzeszewski M, Daniel KHA, Gryko T (2015) p-Expanded coumarins: synthesis, optical properties and applications. J Mater Chem 3:1421–1446

    Article  Google Scholar 

  25. Takuya S, Toshiki S, Hiroyuki K, Tomoya H (2014) Development of a novel fluorescent sensor to detect a specific range of pH. Tett Lett 55:6784–6786

    Article  Google Scholar 

  26. Na’il S, Yaseen AA, Werner MN (2008) Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents. Spectrochim Acta A Mol Biomol Spectrosc 71:818–822

    Article  Google Scholar 

  27. Rashmi CK, Samundeeswari S, Bahubali MC, Megharaja H, Manohar VK, Lokesh AS (2016) A one pot green synthetic route for construction of coumarin C-4 bridged 2, 6-dicyanoanilines and their photophysical study. Synth Comm 46:2063–2072

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the University Grant Commission (UGC) and also UGC-UPE New Delhi, for the financial support. Authors also thank NMR Research Center, Indian Institute of Science (I.I.Sc.), Bangalore and University Sophisticated Instrumentation Center, Dharwad (USIC) for spectral analysis. One of the authors Rashmi C. Kulkarni expresses her gratitude towards Lohit Naik for his advice and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokesh A. Shastri.

Electronic supplementary material

ESM 1

(DOCX 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, R.C., Samundeeswari, S., Shaikh, F. et al. Synthesis of Naked-eye Detectable Fluorescent 2H-chromen-2-One 2, 6-Dicyanoanilines: Effect of Substituents and pH on Its Luminous Behavior. J Fluoresc 27, 1613–1619 (2017). https://doi.org/10.1007/s10895-017-2098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2098-y

Keywords

Navigation