Skip to main content
Log in

Investigation of Solvent Effects on Photophysical Properties of New Aminophthalimide Derivatives-Based on Methanesulfonate

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Novel aminophthalimide derivatives were synthesized starting from (3aR,7aS)-2-(2-hydroxypropyl)-3a,4,7,7a–tetrahydro-1H-isoindole-1,3(2H)-dione (9) , and solvent effects on the photo-physical properties of these newly synthesized aminophthalimide derivatives (compounds 14 and 15) were investigated using UV-Vis absorption spectroscopy, steady-state and time-resolved fluorescence measurements. Both absorption and fluorescence spectra exhibited bathochromic shift with the increased polarity of the solvents for both molecules. Solute-solvent interactions were analyzed using the Lippert-Mataga and Bakhshiev polarity functions, and Kamlet-Taft and Catalan multiple linear regression approaches. The results revealed that these two molecules experienced specific interactions. Furthermore, photo-physical parameters were calculated for both molecules in all of the solvents, such as the fluorescence quantum yield, fluorescence lifetime, radiative (kr) and non-radiative (knr) rate constant values. It was observed that the fluorescence quantum yield values decreased linearly with increasing solvent polarity. This study proved the new dyes including isopropyl methanesulfonate group displayed different behavior from previous studies of aminophthalimide derivatives in water. It was recommended that these new dyes having interesting properties by changing solvent can be used various applications such as environmentally sensitive fluorescent probes, labels in biology, laser industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Czerwinska M, Wierzbicka M, Guzow K, Bylinska I, Wiczk W (2014) Solvatochromic properties of 3,6-di-tert-butyl-8H-indolo[3,2,1-de]acridin-8-one. RSC Adv 4(37):19310–19320

    Article  CAS  Google Scholar 

  2. Papadakis R (2014) The solvatochromic behavior and degree of ionicity of a synthesized pentacyano (N-substituted-4,4′-bipyridinium) ferrate(II) complex in different media. Tuning the solvatochromic intensity in aqueous glucose solutions. Chem Phys 430:29–39

    Article  CAS  Google Scholar 

  3. Jimenez-Sanchez A, Rodriguez M, Metivier R, Ramos-Ortiz G, Maldonado JL, Reboles N, Farfan N, Nakatani K, Santillan R (2014) Synthesis and crystal structures of a series of Schiff bases: a photo-, solvato- and acidochromic compound. New J Chem 38(2):730–738

    Article  CAS  Google Scholar 

  4. Aggarwal K, Khurana JM (2015) Synthesis, photophysical studies, solvatochromic analysis and TDDFT calculations of diazaspiro compounds. Spectrochim Acta A Mol Biomol Spectrosc 143:288–297

    Article  CAS  PubMed  Google Scholar 

  5. Oliveira E, Baptista RMF, Costa SPG, Raposo MMM, Lodeiro C (2014) Synthesis and solvatochromism studies of novel bis(indolyl)methanes bearing functionalized arylthiophene groups as new colored materials. Photochem Photobiol Sci 13(3):492–498

    Article  CAS  PubMed  Google Scholar 

  6. Stock RI, Nandi LG, Nicoleti CR, Schramm ADS, Meller SL, Heying RS, Coimbra DF, Andriani KF, Caramori GF, Bortoluzzi AJ, Machado VG (2015) Synthesis and solvatochromism of substituted 4-(Nitrostyryl)phenolate dyes. J Organomet Chem 80(16):7971–7983

    Article  CAS  Google Scholar 

  7. Menzel R, Kupfer S, Mede R, Görls H, González L, Beckert R (2013) Synthesis, properties and quantum chemical evaluation of solvatochromic pyridinium-phenyl-1,3-thiazol-4-olate betaine dyes. Tetrahedron 69(5):1489–1498

    Article  CAS  Google Scholar 

  8. Niko Y, Cho Y, Kawauchi S, Konishi GI (2014) Pyrene-based D-[small pi]-a dyes that exhibit solvatochromism and high fluorescence brightness in apolar solvents and water. RSC Adv 4(69):36480–36484

    Article  CAS  Google Scholar 

  9. Singh H, Sindhu J, Khurana JM (2014) Determination of dipole moment, solvatochromic studies and application as turn off fluorescence chemosensor of new 3-(4-(dimethylamino)phenyl)-1-(5-methyl-1-(naphthalen-1-yl)-1H-1,2,3-triazol-4-yl)prop-2-en-1-one. Sensors Actuators B Chem 192:536–542

    Article  CAS  Google Scholar 

  10. Aggarwal K, Khurana JM (2014) Effect of hydroxyl group on the photophysical properties of benzo[a]xanthenes – solvatochromic studies and estimation of dipole moment. J Photochem Photobiol A Chem 276:71–82

    Article  Google Scholar 

  11. Khan SA, Asiri AM, Aqlan FMS (2016) Microwave assisted synthesis, optical properties and physicochemical investigations on the powerful fluorophore: Donor (D) -π-Acceptor (A) Chalcone. J Fluoresc 26(6):2133–2140

  12. Patil SS, Thorat KG, Mallah R, Sekar N (2016) Novel Rhodafluors: Synthesis, Photophysical, pH and TD-DFT Studies. J Fluoresc 26(6):2187–2197

  13. Zakerhamidi MS, Sorkhabi SG (2015) Solvent effects on the molecular resonance structures and photo-physical properties of a group of oxazine dyes. J Lumin 157:220–228

    Article  CAS  Google Scholar 

  14. Kishida K, Aoyama A, Hashimoto Y, Miyachi H (2010) Design and synthesis of phthalimide-based fluorescent liver X receptor antagonists. Chem Pharm Bull 58(11):1525–1528

    Article  CAS  PubMed  Google Scholar 

  15. Soujanya T, Fessenden RW, Samanta A (1996) Role of Nonfluorescent twisted intramolecular charge transfer state on the photophysical behavior of aminophthalimide dyes. J Phys Chem 100(9):3507–3512

    Article  CAS  Google Scholar 

  16. Soujanya T, Krishna TSR, Samanta A (1992) Effect of β-cyclodextrin on intramolecular charge-transfer emission of 4-aminophthalimide. J Photochem Photobiol A Chem 66(2):185–192

    Article  CAS  Google Scholar 

  17. Martin E, Weigand R, Pardo A (1996) Solvent dependence of the inhibition of intramolecular charge-transfer in N-substituted 1,8-naphthalimide derivatives as dye lasers. J Lumin 68(2):157–164

    Article  CAS  Google Scholar 

  18. Riedl J, Pohl R, Ernsting NP, Orsag P, Fojta M, Hocek M (2012) Labelling of nucleosides and oligonucleotides by solvatochromic 4-aminophthalimide fluorophore for studying DNA-protein interactions. Chem Sci 3(9):2797–2806

    Article  CAS  Google Scholar 

  19. Badugu R (2005) Fluorescence sensor Design for Transition Metal Ions: the role of the PIET interaction efficiency. J Fluoresc 15(1):71–83

    Article  CAS  PubMed  Google Scholar 

  20. Bhattacharya B, Samanta A (2007) Laser flash photolysis study of the aminophthalimide derivatives: elucidation of the nonradiative deactivation route. Chem Phys Lett 442(4–6):316–321

    Article  CAS  Google Scholar 

  21. Karmakar R, Samanta A (2003) Dynamics of solvation of the fluorescent state of some electron Donor − Acceptor molecules in room temperature ionic liquids, [BMIM][(CF3SO2)2 N] and [EMIM][(CF3SO2)2 N]. J Phys Chem A 107(38):7340–7346

    Article  CAS  Google Scholar 

  22. Ingram JA, Moog RS, Ito N, Biswas R, Maroncelli M (2003) Solute rotation and solvation dynamics in a room-temperature ionic liquid. J Phys Chem B 107(24):5926–5932

    Article  CAS  Google Scholar 

  23. Mandal PK, Samanta A (2005) Fluorescence studies in a Pyrrolidinium ionic liquid: polarity of the medium and solvation dynamics. J Phys Chem B 109(31):15172–15177

    Article  CAS  PubMed  Google Scholar 

  24. Tan A, Bozkurt E, Kishali N, Kara Y (2014) A new and convenient synthesis of amino-phthalimide (1H-isoindole-1,3(2H)-dione) derivatives and their photoluminescent properties. Helv Chim Acta 97(8):1107–1114

    Article  CAS  Google Scholar 

  25. Soujanya T, Krishna TSR, Samanta A (1992) The nature of 4-aminophthalimide-cyclodextrin inclusion complexes. J Phys Chem 96(21):8544–8548

    Article  CAS  Google Scholar 

  26. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358

    Article  CAS  Google Scholar 

  27. Bozkurt E, Acar M, Onganer Y, Meral K (2014) Rhodamine 101-graphene oxide composites in aqueous solution: the fluorescence quenching process of rhodamine 101. PCCP 16(34):18276–18281

    Article  CAS  PubMed  Google Scholar 

  28. Crosby GA, Demas JN (1971) Measurement of photoluminescence quantum yields. Review J Phys Chem 75(8):991–1024

    Article  CAS  Google Scholar 

  29. Valeur B (2001) Molecular Fluorescence-Principles and Applications. Wiley-VCH Verlag GmbH

  30. Tan A, Koc B, Sahin E, Kishali NH, Kara Y (2011) Synthesis of new Cantharimide analogues derived from 3-Sulfolene. Synthesis 2011(07):1079–1084

    Article  Google Scholar 

  31. Durantini AM, Falcone RD, Anunziata JD, Silber JJ, Abuin EB, Lissi EA, Correa NM (2013) An interesting case where water behaves as a unique solvent. 4-aminophthalimide emission profile to monitor aqueous environment. J Phys Chem B 117(7):2160–2168

    Article  CAS  PubMed  Google Scholar 

  32. Vázquez ME, Blanco JB, Imperiali B (2005) Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. J Am Chem Soc 127(4):1300–1306

    Article  PubMed  Google Scholar 

  33. Basavaraja J, Suresh Kumar HM, Inamdar SR, Wari MN (2016) Estimation of ground and excited state dipole moment of laser dyes C504T and C521T using solvatochromic shifts of absorption and fluorescence spectra. Spectrochim Acta A Mol Biomol Spectrosc 154:177–184

    Article  CAS  PubMed  Google Scholar 

  34. Patil SK, Wari MN, Panicker CY, Inamdar SR (2014) Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method. Spectrochim Acta A Mol Biomol Spectrosc 123:117–126

    Article  CAS  PubMed  Google Scholar 

  35. Khattab M, Wang F, Clayton AHA (2016) UV–Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478. Spectrochim Acta A Mol Biomol Spectrosc 164:128–132

    Article  CAS  PubMed  Google Scholar 

  36. Baathulaa K, Xu Y, Qian X (2010) Unusual large stokes shift and solvatochromic fluorophore: synthesis, spectra, and solvent effect of 6-substituted 2,3-naphthalimide. J J Photochem Photobiol, A: Chem 216(1):24–34

    Article  CAS  Google Scholar 

  37. Kucherak OA, Didier P, Mély Y, Klymchenko AS (2010) Fluorene analogues of Prodan with superior fluorescence brightness and solvatochromism. J Phys Chem Lett 1(3):616–620

    Article  CAS  Google Scholar 

  38. Basavaraja J, Inamdar SR, Suresh Kumar HM (2015) Solvents effect on the absorption and fluorescence spectra of 7-diethylamino-3-thenoylcoumarin: evaluation and correlation between solvatochromism and solvent polarity parameters. Spectrochim Acta A Mol Biomol Spectrosc 137:527–534

    Article  CAS  PubMed  Google Scholar 

  39. Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the Dipolemoments of excited molecules. Bull Chem Soc Jpn 29(4):465–470

    Article  CAS  Google Scholar 

  40. Bakhshiev NG (1962) Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions. Opt Spectrosc 13:24–29

    Google Scholar 

  41. Dorneanu PP, Homocianu M, Tigoianu IR, Airinei A, Zaltariov M, Cazacu M (2015) Solvent effects on the photophysical properties of poly[1,4-dihydroxyanthraquinoneimine-1,3-bis(phenylene-ester-methylene)tetramethyldisiloxane]. Spectrochim Acta A Mol Biomol Spectrosc 134:218–224

    Article  CAS  PubMed  Google Scholar 

  42. Desai VR, Hunagund SM, Basanagouda M, Kadadevarmath JS, Sidarai AH (2016) Solvent effects on the electronic absorption and fluorescence spectra of HNP: estimation of ground and excited state dipole moments. J Fluoresc 26(4):1391–1400

    Article  CAS  PubMed  Google Scholar 

  43. Abboud JL, Kamlet MJ, Taft RW (1977) Regarding a generalized scale of solvent polarities. J Am Chem Soc 99(25):8325–8327

    Article  CAS  Google Scholar 

  44. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .Pi.*, .Alpha., and .Beta., and some methods for simplifying the generalized solvatochromic equation. J Organomet Chem 48(17):2877–2887

    Article  CAS  Google Scholar 

  45. Catalán J, Reichardt C (2012) Analysis of the solvatochromism of 9,9′-Biaryl compounds using a pure solvent dipolarity scale. J Phys Chem A 116(19):4726–4734

    Article  PubMed  Google Scholar 

  46. Catalán J (2009) Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J Phys Chem B 113(17):5951–5960

    Article  PubMed  Google Scholar 

  47. Kumari R, Varghese A, George L (2016) Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods. J Fluoresc 1–15

  48. Reichardt C (2003) Solvents and solvent effects in organic chemistry. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  49. Patil SS, Muddapur GV, Patil NR, Melavanki RM, Kusanur RA (2015) Fluorescence characteristics of aryl boronic acid derivate (PBA). Spectrochim Acta A Mol Biomol Spectrosc 138:85–91

    Article  CAS  PubMed  Google Scholar 

  50. Sarkar A, Kedia N, Purkayastha P, Bagchi S (2011) Synthesis and spectroscopic investigation of a novel solvatochromic dye. J Lumin 131(8):1731–1738

    Article  CAS  Google Scholar 

  51. Alphonse R, Varghese A, George L, Nizam A (2016) Estimation of ground state and excited state dipole moments of a novel Schiff base derivative containing 1, 2, 4-triazole nucleus by solvatochromic method. J Mol Liq 215:387–395

    Article  CAS  Google Scholar 

  52. Abdel-Shafi AA, Ismail MA, Al-Shihry SS (2016) Effect of solvent and encapsulation in β-cyclodextrin on the photophysical properties of 4-[5-(thiophen-2-yl)furan-2-yl]benzamidine. J Photochem Photobiol A Chem 316:52–61

    Article  CAS  Google Scholar 

  53. Saroja G, Ramachandram B, Saha S, Samanta A (1999) The fluorescence response of a structurally modified 4-aminophthalimide derivative covalently attached to a fatty acid in homogeneous and micellar environments. J Phys Chem B 103(15):2906–2911

    Article  CAS  Google Scholar 

  54. Krystkowiak E, Dobek K, Maciejewski A (2006) Origin of the strong effect of protic solvents on the emission spectra, quantum yield of fluorescence and fluorescence lifetime of 4-aminophthalimide: role of hydrogen bonds in deactivation of S1-4-aminophthalimide. J Photochem Photobiol A Chem 184(3):250–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayse Tan or Ebru Bozkurt.

Electronic supplementary material

ESM 1

(DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, A., Bozkurt, E. & Kara, Y. Investigation of Solvent Effects on Photophysical Properties of New Aminophthalimide Derivatives-Based on Methanesulfonate. J Fluoresc 27, 981–992 (2017). https://doi.org/10.1007/s10895-017-2033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2033-2

Keywords

Navigation