Skip to main content
Log in

Microstructural and Radioluminescence Characteristics of Nd3+ Doped Columbite-Type SrNb2O6 Phosphor

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Undoped and different concentration Nd3+ doped SrNb2O6 powders with columbite structure were synthesized by molten salt process using a mixture of strontium nitrate and niobium (V) oxide and NaCl-KCl salt mixture as a flux under relatively low calcining temperature. X-ray diffraction analysis results indicated that SrNb2O6 phases found to be orthorhombic columbite single phase for undoped, 0.5 and 3 mol% Nd3+ doping concentrations. Phase composition of the powders was examined by SEM-EDS analyses. Radioluminescence properties of Nd3+ doped samples from UV to near-IR spectral region were studied. The emissions increased with the doping concentration of up to 3 mol%, and then decreased due to concentration quenching effect. There is a sharp emission peak around 880 nm associated with 4F5/2 → 4I9/2 transition in the Nd3+ ion between 300 and 1100 nm. The broad emission band intensity was observed from 400 to 650 nm where the peak intensities increased by increasing Nd3+ doping concentration. All the measurements were taken under the room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cummings JP, Simonsen SH (1970) The crystal structure of CaNb2O6. Am Mineral 55:90–97

    CAS  Google Scholar 

  2. Maeda M, Yamamura T, Ikeda T (1987) Dielectric characteristics of several complex oxide ceramics at microwave frequencies. Jpn J Appl Phys 26:76–79

    Article  CAS  Google Scholar 

  3. Ballman AA, Porto SPS, Yariv AJ (1963) Calcium niobate Ca(NbO3)2-a new laser host. Appl Phys 34:3155

    Article  CAS  Google Scholar 

  4. Greenblatt M, Wanklyn BM, Garrard BJ (1982) Flux growth of MNb2O6 (M = Mg, Zn, Ba) single crystals. J Cryst Growth 58:463–466

    Article  CAS  Google Scholar 

  5. Polgar K, Peter A, Paitz J, Zaldo C (1995) Crystal growth and preparation of colourless MgNb2O6 single crystals. J Cryst Growth 151:365–368

    Article  CAS  Google Scholar 

  6. Heid C, Weitzel H, Burlet P, Winkelmann M, Ehrenberg H, Fuess H (1997) Magnetic phase diagrams of CoNb2O6. Physica B 574:234–236

    Google Scholar 

  7. Lee HJ, Hong KS, Kim SJ, Kim IT (1997) Dielectric properties of MNb2O6 compounds (where M = Ca, Mn, Co, Ni, OR Zn). Mater Res Bull 32:847

    Article  CAS  Google Scholar 

  8. Wachtel A (1964) Self-activated luminescence of M21 niobates and tantalates. J Electrochem Soc 111:534–538

    Article  CAS  Google Scholar 

  9. Zhou Y, Lü M, Qiu Z, Zhang A, Ma Q, Zhang H, Zhou G, Yang Z (2007) Photoluminescence characteristics of pure and Dy-doped ZnNb2O6 nanoparticles prepared by a combustion method. J Phys Chem C 111:10190–10193

    Article  CAS  Google Scholar 

  10. Zhou R, Wei X, Huang S, Chen Y, Yin M (2012) Efficient near-infrared quantum cutting in Yb3+ doped CaNb2O6 phosphor based on energy transfer. J Alloys Compd 537:123–126

    Article  CAS  Google Scholar 

  11. Cao J, Ji Y, Li J, Zhu Z, Wang Y, You Z, Tu C (2011) Crystal growth, Judd–Ofelt analysis and fluorescence properties of Tm3+: CaNb2O6 crystal. J Lumin 131:1350–1354

    Article  CAS  Google Scholar 

  12. De Camargo ASS, Silva RA, Andreeta JP, Nunes LAO (2005) Stimulated emission and excited state absorption in neodymium-doped CaNb2O6 single crystal fibers grown by the LHPG technique. Appl Phys B Lasers Opt 80:497–502

    Article  Google Scholar 

  13. Camargo De ASS, Ferrari CR, Silva RA, Nunes LAO, Hernandes AC, Andreeta JP (2008) Spectroscopic features of erbium-doped CaM2O6 (M = Nb, Ta) single crystal fibers grown by the laser-heated pedestal growth technique. J Lumin 128:223–226

    Article  Google Scholar 

  14. Mahlik S, Grinberg M, Kaminskii AA, Bettinelli M, Boutinaud P (2010) Luminescence of Ca(NbO3)2:Pr3+: Pr3+ and self-trapped exciton emission. Radiat Meas 45:288–291

    Article  CAS  Google Scholar 

  15. Pedrini C, Belsky A, Ivanovskikh KV, Petrosyan AG, Sargsyan RV, Kamenskikh I (2011) Cerium-, praseodymium- and terbium-trapped excitons in oxides. Chem Phys Lett 515:258–262

    Article  CAS  Google Scholar 

  16. Singh KN, Bajpai PK (2011) Dielectric relaxation in pure columbite phase of SrNb2O6 ceramic material: impedance analysis. World Journal of Condensed Matter Physics 1:37–48

    Article  CAS  Google Scholar 

  17. Lee WJ, Fang TT (1998) Nonisothermal reaction kinetics of SrNb2O6 and BaNb2O6 for the formation of SrxBa1−xNb2O6. J Am Ceram Soc 81:193–199

    Article  CAS  Google Scholar 

  18. Leitner J, Hampl M, Růžička K, Straka M, Sedmidubský D, Svoboda P (2008) Thermodynamic properties of strontium metaniobate SrNb2O6. J Therm Anal Calorim 91:985–990

    Article  CAS  Google Scholar 

  19. Leitner J, Hampl M, Růžička K, Sedmidubský D, Svoboda P, Vejpravová J (2006) Heat capacity, enthalpy and entropy of strontium bismuth niobate and strontium bismuth tantalate. Thermochim Acta 450:105–109

    Article  CAS  Google Scholar 

  20. Chen D, Jinhua Y (2009) Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chem Mater 21:2327–2333

    Article  CAS  Google Scholar 

  21. Pastor M, Goenka S, Maiti S, Biswas K, Manna I (2010) Phase evolution, dielectric and impedance spectroscopic study of SrNb2O6 columbite phase. Ceram Int 36:1041–1045

    Article  CAS  Google Scholar 

  22. Huang T, Lin X, Xing J, Wang W, Shan Z, Huang F (2007) Photocatalytic activity of hetero-junction semiconductor WO3/SrNb2O6. Mater Sci Eng B 141:49–54

    Article  CAS  Google Scholar 

  23. Zhou Y, Ma Q, Lü M, Qiu Z, Zhang A, Yang Z (2008) Preparation and photoluminescence of SrNb2O6 nanoparticles prepared by combustion method. Mater Sci Eng B 150:66–69

    Article  CAS  Google Scholar 

  24. Muthurajan H, Kumar HH, Rao NK, Pradhan S, Jha RK, Ravi V (2008) Low temperature synthesis of SrNb2O6 and SrTa2O6 using hydroxide precursor. Mater Lett 62:892–894

    Article  CAS  Google Scholar 

  25. Fang J, Ma J, Sun Y, Liu Z, Gao C (2011) Electrochemical synthesis of nanocrystalline SrNb2O6 powders and characterization of their photocatalytic property. Mater Sci Eng B 176:701–705

    Article  CAS  Google Scholar 

  26. Cho IS, Lee S, Noh JH, Kim DW, Jung HS, Kim DW, Hong KS (2010) Facile hydrothermal synthesis of SrNb2O6 nanotubes with rhombic cross sections. Cryst Growth Des 10(6):2447–2450

    Article  CAS  Google Scholar 

  27. Ananta A, Brydson R, Thomas NW (1999) Synthesis, formation and characterisation of MgNb2O6 powder in a columbite-like phase. J Eur Ceram Soc 19:355–362

    Article  CAS  Google Scholar 

  28. Natarajan N, Samuel V, Pasricha R, Ravi V (2005) A co-precipitation technique to prepare BaNb2O6. Mater Sci Eng B 117:169–171

    Article  Google Scholar 

  29. Ekmekçi MK, Erdem M, Mergen A, Özen G, Bartolo BD (2014) Molten salt synthesis and spectral properties of Nd3+ doped CdNb2O6 columbite phosphors. J Alloys Compd 591:230–233

    Article  Google Scholar 

  30. Zhao Y, Zhang P (2015) Phase composition, crystal structure, complex chemical bond theory and microwave dielectric properties of high-Q materials in a (Nd1-xYx)NbO4 system. RSC Advances Communıcatıon 118:193–198

    Google Scholar 

  31. Sato M, Hama YJ (1995) Lithium insertion characteristics of CuNb2O6. J Solid State Chem 118:193–198

    Article  CAS  Google Scholar 

  32. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  CAS  Google Scholar 

  33. Srivastava AM, Ackerman JF, Beeers WW (1997) On the luminescence of Ba5 M 4O15(M = Ta5+, Nb5+). J Solid State Chem 134:187–191

    Article  CAS  Google Scholar 

  34. Ayvacıklı M, Ege A, Ekdal E, Popovici EJ, Can N (2012) Radioluminescence study of rare earth doped some yttrium based phosphors. Opt Mater 34:1958–1961

    Article  Google Scholar 

  35. Gordo VO, Arslanli YT, Canimoglu A, Ayvacikli M, Gobato YG, Henini M, Can N (2015) Visible to infrared low temperature luminescence of Er3+ and Nd3+. Appl Radiat Isot 99:69–76

    Article  Google Scholar 

  36. Dieke GH (1968) Spectra and energy levels of rare earth ions in crystals. Interscience Publishers, New York

    Google Scholar 

  37. Blasse G (1986) Energy transfer between inequivalent Eu2+ ions. J Solid State Chem 62:207–211

    Article  CAS  Google Scholar 

  38. Garciá JS, Bausá LE, Jaque D (2005) An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons Ltd, England

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mete Kaan Ekmekçi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmekçi, M.K., İlhan, M., Ege, A. et al. Microstructural and Radioluminescence Characteristics of Nd3+ Doped Columbite-Type SrNb2O6 Phosphor. J Fluoresc 27, 973–979 (2017). https://doi.org/10.1007/s10895-017-2032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2032-3

Keywords

Navigation