Skip to main content
Log in

A Ratiomeric Fluorescent Sensor for Zn2+ Based on N,N′-Di(quinolin-8-yl)oxalamide

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new ratiometric fluorescent sensor (DQO) based on N,N′-Di(quinolin-8-yl) oxalamide has been designed and synthesized for selective detection of Zn2+. The fluorescence ratio (I 536 nm/I 450 nm) of DQO was enhanced 10-fold when Zn2+ was present in a buffer aqueous solution at pH 8.66. The sensor showed linear response toward Zn2+ in the concentration range 0–15 μM, and the detection limit was calculated to be 2.4 μM. A Job’s plot implied the formation of a DQO/Zn2+ complex with 1:1 stoichiometry, and the apparent association constant of DQO/Zn2+ complex was computed to be 1.5 × 104 M−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271(5252):1081–1085

    Article  CAS  PubMed  Google Scholar 

  2. Fraker PJ, King LE (2004) Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr 24:277–298

    Article  CAS  PubMed  Google Scholar 

  3. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nature. Rev Neurosci 6:449–462

    Article  CAS  Google Scholar 

  4. Urbanova N, Kadar M, Toth K (2008) Fluorescent iminodiacetamide derivatives as potential ionophores for optical zinc ion-selective sensors. Anal Sci 24:727–733

    Article  CAS  PubMed  Google Scholar 

  5. Tewari PK, Singh AK (2000) Thiosalicylic acid-immobilized amberlite XAD-2: metal sorption behaviour and applications in estimation of metal ions by flame atomic absorption spectrometry. Analyst 125:2350–2355

    Article  CAS  PubMed  Google Scholar 

  6. Lear J, Hare DJ, Fryer F, Adlard PA, Finkelstein DI, Doble PA (2012) High-resolution elemental bioimaging of Ca, Mn, Fe, Co, Cu, and Zn employing LA-ICP-MS and hydrogen reaction gas. Anal Chem 84:6707–6714

    Article  CAS  PubMed  Google Scholar 

  7. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quang DT, Kim JS (2010) Fluoro-and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem Rev 110:6280–6301

    Article  CAS  Google Scholar 

  9. Li H, Zhang SJ, Gong CL, Wang JZ, Wang F (2016) A turn-on and reversible fluorescence sensor for zinc ion based on 4,5-diazafluorene schiff base. J Fluoresc 26:1555–1561

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Bai Y, Han Z, He W, Guo Z (2015) Photoluminescence imaging of Zn2+ in living systems. Chem Soc Rev 44:4475–4974

    Article  Google Scholar 

  11. Yuan L, Lin WY, Zheng KB, Zhu SS (2013) FRET-based small-molecule fluorescent sensors: rational design and bioimaging applications. Acc Chem Res 46:1462–1473

    Article  CAS  PubMed  Google Scholar 

  12. Ying Z, Jie D, Liang T, Abdel-Halim ES, Liping J, Jun-Jie Z (2016) FITC doped rattle-type silica colloidal particle-based ratiometric fluorescent sensor for biosensing and imaging of superoxide anion. ACS Appl Mat Interfaces 8:6423–6430

    Article  Google Scholar 

  13. Nolan EM, Ryu JW, Jaworski J, Feazell RP, Sheng M, Lippard SJ (2006) Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. J Am Chem Soc 128:15517–15528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma Y, Wang F, Kambam S, Chen X (2013) A quinoline-based fluorescent chemosensor for distinguishing cadmium from zinc ions using cysteine as an auxiliary reagent. Sens Actuators B Chem 188:1116–1122

    Article  CAS  Google Scholar 

  15. Meng X, Wang SX, Zhu M (2012) Quinoline-based fluorescence sensors. In: Saha S (ed) Molecular photochemistry-various aspects. InTech, Rijeka

    Google Scholar 

  16. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2011) Fluorescent chemosensors based on spiroring- opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  PubMed  Google Scholar 

  17. Zhu B, Guo B, Zhao Y, Zhang B, Du B (2013) A highly sensitive ratiometric fluorescent probe with a large emission shift for imaging endogenous cysteine in living cells. Biosens Bioelectron 55C:72–75

    Google Scholar 

  18. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172

    Article  CAS  PubMed  Google Scholar 

  19. Shi D, Zhou X, Zheng T, Zou Y, Guo S, Lv J, Yan F (2015) Recognition and fluorescent sensing of zinc ions using organic fluorophores-based sensor molecules. J Iran Chem Soc 12:293–308

    Article  CAS  Google Scholar 

  20. Stasiuk GJ, Minuzzi F, Sae-Heng M, Rivas C, Juretschke HP, Piemonti L, Allegrini PR, Laurent D, Duckworth AR, Beeby A, Rutter GA, Long NJ (2015) Dual-modal magnetic resonance/fluorescent zinc sensors for pancreatic β-cell mass imaging. Chem Eur J 21:5023–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mummidivarapu VVS, Tabbasum K, Chinta JP, Rao CP (2012) 1,3-di-amidoquinoline conjugate of calix[4]arene (L) as a ratiometric and colorimetric sensor for Zn2+: spectroscopy, microscopy and computational studies. Dalton Trans 41:1671–1674

    Article  CAS  PubMed  Google Scholar 

  22. Mummidivarapu VVS, Bandaru S, Yarramala DS, Samanta K, Mhatre DS, Rao CP (2015) Binding and ratiometric dual ion recognition of Zn2+ and Cu2+ by 1,3,5-tris- amidoquinoline conjugate of calix[6]arene by spectroscopy and its supramolecular features by microscopy. Anal Chem 87:4988–4995

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Guo X, Si W, Jia L, Qian X (2008) Ratiometric and water-soluble fluorescent zinc sensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Org Lett 10:473–476

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Guo X, Zheng L, Jia L, Qian X (2013) A new strategy for the ratiometric fluorescence detection of Zn (II) in the surfactant solution. J Photochem Photobiol B 257:20–25

    Article  CAS  Google Scholar 

  25. Zhang Y, Guo X, Jia L, Xu S, Xu Z, Zheng L, Qian X (2012) Substituent-dependent fluorescent sensors for zinc ions based on carboxamidoquinoline. Dalton Trans 4:11776–11782

    Article  Google Scholar 

  26. Tian X, Guo X, Jia L, Yang R, Cao G, Liu C (2015) A fluorescent sensor based on bicarboxamidoquinoline for highly selective relay recognition of Zn2+ and citrate with ratiometric response. Sens Actuators B Chem 22:923–929

    Article  Google Scholar 

  27. He C, Qian X, Xu Y, Yang C, Yin L, Zhu W (2011) A ratiometric fluorescent sensor for oxalate based on alkyne-conjugated carboxamidoquinolines in aqueous solution and imaging in living cells. Dalton Trans 40:1034–1037

    Article  CAS  PubMed  Google Scholar 

  28. Jiang J, Jiang H, Tang X, Yang L, Dong W, Liu W, Fang R, Liu W (2011) An efficient sensor for Zn2+ and Cu2+ based on different binding modes. Dalton Trans 40:6367–6370

    Article  CAS  PubMed  Google Scholar 

  29. Tian X, Guo X, Jia L, Zhang Y (2015) Bi-8-carboxamidoquinoline derivatives for the fluorescent recognition of Zn2+. J Fluoresc 25:441–449

    Article  CAS  PubMed  Google Scholar 

  30. Tian X, Guo X, Yu F, Jia L (2016) An oxalamidoquinoline-based fluorescent sensor for selective detection of Zn2+ in solution and living cells and its logic gate behavior. Sensors Actuators B Chem 232:181–187

    Article  CAS  Google Scholar 

  31. Aragoni MC, Arca M, Bencini A, Caltagirone C, Garau A, Isaia F, Light ME, Lippolis V, Lodeiro C, Mameli M, Montis R, Mostallino MC, Pintus A, Puccioni S (2013) Zn2+/Cd2+ optical discrimination by fluorescent chemosensors based on 8-hydroxyquinoline derivatives and sulfur-containing macrocyclic units. Dalton Trans 42:14516–14530

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Yang Z, Liu Z, Wang B, Li S (2011) Highly selective and sensitive fluorescent nanosensor for zinc ions. Sens Actuators B Chem 160:1504–1507

    Article  CAS  Google Scholar 

  33. Joshi BP, Park J, Lee WI, Lee K-H (2009) Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta 78:903–909

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Guo X, Tian X, Liu A, Jia L (2015) Carboxamidoquinoline–coumarin derivative: a ratiometric fluorescent sensor for Cu (II) in a dual fluorophore hybrid. Sens Actuators B Chem 218:37–41

    Article  CAS  Google Scholar 

  35. Hessels AM, Merkx M (2016) A simple method for proper analysis of FRET sensor titration data and intracellular imaging experiments based on isosbestic points. ACS Sens 1:498–502

    Article  CAS  Google Scholar 

  36. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  37. Yuan M, Zhou W, Liu X, Zhu M, Li J, Yin X, Zheng H, Zou Z, Ouyang C, Liu H, Li Y, Zhu D (2008) A multianalyte chemosensor on a single molecule: promising structure for an integrated logic gate. J Org Chem 73:5008–5014

    Article  CAS  PubMed  Google Scholar 

  38. Song Z-K, Dong B, Lei G-J, Peng X-J, Guo Y (2013) Novel selective fluorescent sensors for sensing Zn2+ ions based on a coumarin Schiff-base. Tetrahedron Lett 54:4945–4949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21176125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfeng Guo or Lihua Jia.

Electronic supplementary material

ESM 1

(DOCX 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Guo, X., Tian, X. et al. A Ratiomeric Fluorescent Sensor for Zn2+ Based on N,N′-Di(quinolin-8-yl)oxalamide. J Fluoresc 27, 723–728 (2017). https://doi.org/10.1007/s10895-016-2003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-2003-0

Keywords

Navigation