Skip to main content
Log in

Detection of Nitric Oxide Induced by Angiotensin II Receptor Type 1 Using Soluble Guanylate Cyclase beta1 Subunit Fused to a Yellow Fluorescent Protein, Venus

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is an important gaseous molecule involved in many physiological and pathophysiological processes, including the regulation of G protein-coupled receptors (GPCRs). Here, we report the development of a high-affinity method to detect NO using soluble guanylate cyclase beta1 subunit fused to Venus, a variant of yellow fluorescent protein (sGC-Venus). We measured the fluorescence intensity of sGC-Venus with and without an NO donor using purified probes. At 560 nm emission, the fluorescence intensity of sGC-Venus at 405 nm excitation was increased by approximately 2.5-fold by the NO donor, but the fluorescence intensities of sGC-Venus excited by other wavelengths showed much less of an increase or no significant increase. To measure NO in living cells, the fluorescence intensity of sGC-Venus at 405 nm excitation was normalized to that at 488 nm excitation because it showed no significant difference with or without the NO donor. In HEK293 cells overexpressing the angiotensin II receptor type 1 (AT1 receptor), the production of NO induced by activation of the AT1 receptor was detected using sGC-Venus. These data indicate that sGC-Venus will be a useful tool for visualizing intracellular NO in living cells and that NO might be a common tool to regulate GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  2. Moncada S, Bolanfios JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689

    Article  CAS  PubMed  Google Scholar 

  3. Haldar SM, Stamler JS (2013) S-nitrosylation: integrator of cardiovascular performance and oxygen delivery. J Clin Invest 123:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG et al (2007) Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 129:511–522

    Article  CAS  PubMed  Google Scholar 

  5. Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ et al (2008) S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 31:395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang G, Moniri NH, Ozawa K, Stamler JS, Daaka Y (2006) Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc Natl Acad Sci U S A 103:1295–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coneski PN, Schoenfisch MH (2012) Nitric oxide release: part III. Measurement and reporting. Chem Soc Rev 41:3753–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. von Bohlen und Halbach O (2003) Nitric oxide imaging in living neuronal tissues using fluorescent probes. Nitric Oxide 9:217–228

    Article  Google Scholar 

  9. Namiki S, Hirose K, Iino M (2001) Mapping of heme-binding domains in soluble guanylyl cyclase beta1 subunit. Biochem Biophys Res Commun 288:798–804

    Article  CAS  PubMed  Google Scholar 

  10. Namiki S, Kakizawa S, Hirose K, Iino M (2005) NO signalling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellum. J Physiol 566:849–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ozawa K, Komatsubara AT, Nishimura Y, Sawada T, Kawafune H, Tsumoto H et al (2013) S-nitrosylation regulates mitochondrial quality control via activation of parkin. Sci Rep 3:2202

    PubMed  PubMed Central  Google Scholar 

  12. Reed SE, Staley EM, Mayginnes JP, Pintel DJ, Tullis GE (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138:85–98

    Article  CAS  PubMed  Google Scholar 

  13. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  14. Huang ZM, Gao E, Fonseca FV, Hayashi H, Shang X, Hoffman NE et al (2013) Convergence of G protein-coupled receptor and S-nitrosylation signaling determines the outcome to cardiac ischemic injury. Sci Signal 6:ra95

    PubMed  PubMed Central  Google Scholar 

  15. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Phys Regul Integr Comp Phys 284:R1–12

    CAS  Google Scholar 

  16. Goodfriend TL, Elliott ME, Catt KJ (1996) Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654

    Article  CAS  PubMed  Google Scholar 

  17. Patzak A, Lai EY, Mrowka R, Steege A, Persson PB, Persson AE (2004) AT1 receptors mediate angiotensin II-induced release of nitric oxide in afferent arterioles. Kidney Int 66:1949–1958

    Article  CAS  PubMed  Google Scholar 

  18. Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E (2015) Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 6:20

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zaobornyj T, Ghafourifar P (2012) Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol 303:H1283–H1293

    Article  CAS  PubMed  Google Scholar 

  20. Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    Article  CAS  PubMed  Google Scholar 

  21. Ozawa K, Tsumoto H, Wei W, Tang CH, Komatsubara AT, Kawafune H et al (2012) G. Proteomic analysis of the role of S-nitrosoglutathione reductase in lipopolysaccharide-challenged mice. Proteomics 12:2024–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu J, Prole DL, Shen Y, Lin Z, Gnanasekaran A, Liu Y et al (2014) Red fluorescent genetically encoded Ca2+ indicators for use in mitochondria and endoplasmic reticulum. Biochem J 464:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY et al (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Ministry of Education, Culture, Sports and Technology (MEXT) Grants-in-Aid for Scientific Research (#14478287 and #14478266).

Author Contributions

Experiment conception and design: KO. Experiment performance: YT, ATK, KO and MN. Data analysis: YT, ATK, KO, JZ and MY. Paper writing: KO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Ozawa.

Ethics declarations

Competing Financial Interests

The authors declare no competing financial interests.

Additional information

Yuichi Tsuji, Kentaro Ozawa equal contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, Y., Ozawa, K., Komatsubara, A.T. et al. Detection of Nitric Oxide Induced by Angiotensin II Receptor Type 1 Using Soluble Guanylate Cyclase beta1 Subunit Fused to a Yellow Fluorescent Protein, Venus. J Fluoresc 27, 399–405 (2017). https://doi.org/10.1007/s10895-016-1968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1968-z

Keywords

Navigation