Skip to main content
Log in

Investigating Two-Photon-Induced Fluorescence in Rhodamine-6G in Presence of Cetyl-Trimethyl-Ammonium-Bromide

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We investigate the effect of cetyl-trimethyl-ammonium-bromides (CTAB) concentration on the fluorescence of Rhodamine-6G in water. This spectroscopic study of Rhodamine-6G in presence of CTAB was performed using two-photon-induced-fluorescence at 780 nm wavelength using high repetition rate femtosecond laser pulses. We report an increment of ∼10 % in the fluorescence in accordance with ∼12 % enhancement in the absorption intensity of the dye molecule around the critical micellar concentration. We discuss the possible mechanism for the enhancement in the two-photon fluorescence intensity and the importance of critical micellar concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kartal C, Akbas H (2005) Study on the interaction of anionic dye–nonionic surfactants in a mixture of anionic and nonionic surfactants by absorption spectroscopy. Dyes Pigm 65:191–195

    Article  CAS  Google Scholar 

  2. Tunc S, Duman O (2007) Investigation of interactions between some anionic dyes and cationic surfactants by conductometric method. Fluid Phase Equilib 251:1–7

    Article  CAS  Google Scholar 

  3. Yang J (2004) Interaction of surfactants and aminoindophenol dye. J Colloid Interface Sci 274:237–243

    Article  CAS  PubMed  Google Scholar 

  4. Purkait M, DasGupta S, De S (2004) Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Separation Purification Tech 37:81–92

    Article  CAS  Google Scholar 

  5. Purkait M, DasGupta S, De S (2004) Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J Colloid Interface Sci 270:496–506

    Article  CAS  PubMed  Google Scholar 

  6. Bilski P, Holt R, Chignell C (1997) Photochemistry and picosecond absorption spectra of aqueous suspensions of a polycrystalline titanium dioxide optically transparent in the visible spectrum. J Photochem Photobio A: Chem 110:67–75

    Article  CAS  Google Scholar 

  7. Hait SK, Majhi PR, Blume A, Moulik SP (2003) A critical assessment of micellization of sodium dodecyl benzene sulfonate (SDBS) and its interaction with poly(vinyl pyrrolidone) and hydrophobically modified polymers, JR 400 and LM 200. J Phys Chem B 107:3650–3658

    Article  CAS  Google Scholar 

  8. Garcia-Rio L, Hervella P, Mejuto JC, Parajo M (2007) Spectroscopic and kinetic investigation of the interaction between crystal violet and sodium dodecylsulfate. Chem Phys 335:164–176

    Article  CAS  Google Scholar 

  9. Rashidi-Alavijeha M, Javadiana S, Gharibia H, Moradia M, Tehrani-Baghab AR, Shahira AA (2011) Intermolecular interactions between a dye and cationic surfactants: effects of alkyl chain, head group, and counterion. Colloids Surfaces A: Physicochem Eng Aspects 380:119–127

    Article  Google Scholar 

  10. Ozeki S, Ikeda S (1982) The sphere-rod transition of micelles and the two-step micellization of dodecyltrimethylammonium bromide in aqueous NaBr solutions. J Colloid Interface Sci 87:424–430

    Article  CAS  Google Scholar 

  11. Imae T, Kamiya R, Ikeda S (1985) Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions. J Colloid Interface Sci 108:215–225

    Article  CAS  Google Scholar 

  12. Bielska M, Sobczynska A, Prochaska K (2009) Dye–surfactant interaction in aqueous solutions. Dyes Pigm 80:201–205

    Article  CAS  Google Scholar 

  13. Abuin E, Lissi E, Jara P (2007) Effect of the organic solvent on the interfacial micropolarity of AOT-Water reverse micelles. J Chil Chem Soc 52:1082–1087

    CAS  Google Scholar 

  14. Tatikolov AS, Costa SMB (2001) Effects of normal and reverse micellar environment on the spectral properties, isomerization and aggregation of a hydrophilic cyanine dye. Chem Phys Lett 346:233–240

    Article  CAS  Google Scholar 

  15. Song A, Zhang J, Zhang M, Shen T, Tang J (2000) Spectral properties and structure of fluorescein and its alkyl derivatives in micelles. Colloids Surface A: Physicochem Eng Aspects 167:253–262

    Article  CAS  Google Scholar 

  16. Shannigrahi M, Bagchi S (2005) Novel fluorescent probe as aggregation predictor and micro-polarity reporter for micelles and mixed micelles. Spectrochim Acta A 61:2131–2138

    Article  Google Scholar 

  17. Topel O, Cakir BA, Budama L, Hoda N (2013) Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J Mol Liq 177:40–43

    Article  CAS  Google Scholar 

  18. Anand U, Jash C, Mukherjee S (2011) Spectroscopic determination of critical micelle concentration in aqueous and non-aqueous media using a non-invasive method. J Colloid Interface Sci 364:400–406

    Article  CAS  PubMed  Google Scholar 

  19. Alargova RG, Kochijashky II, Sierra ML, Zana R (1998) Micelle aggregation numbers of surfactants in aqueous solutions: a comparison between the results from steady-state and time-resolved fluorescence quenching. Langmuir 14:5412–5418

    Article  CAS  Google Scholar 

  20. Yu LL, Tan MY, Ho B, Ding JL, Wohland T (2006) Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide. Anal Chim Acta 556:216–225

    Article  CAS  PubMed  Google Scholar 

  21. Luschtinetz F, Dosche C (2009) Determination of micelle diffusion coefficients with fluorescence correlation spectroscopy (FCS). J Colloid Interface Sci 338:312–315

    Article  CAS  PubMed  Google Scholar 

  22. Zettl H, Portnoy Y, Gottlieb M, Krausch G (2005) Investigation of micelle formation by fluorescence correlation spectroscopy. J Phys Chem B 109:13397–13401

    Article  CAS  PubMed  Google Scholar 

  23. Wattebled L, Laschewsky A, Moussa A, Habib-Jiwan JL (2006) Aggregation numbers of cationic oligomeric surfactants: a time-resolved fluorescence quenching study. Langmuir 14:2551–2557

    Article  Google Scholar 

  24. Malliaris A, Binana-Limbele W, Zana R (1986) Fluorescence probing studies of surfactant aggregation in aqueous solutions of mixed ionic micelles. J Colloid Interface Sci 110:114–120

    Article  CAS  Google Scholar 

  25. Panda K, Sarkar G, Manna K (2009) Physicochemical studies on surfactant aggregation 1. Effect of polyethylene glycols on the micellization of SDS. J Disper Sci Technol 30:1152–1160

    Article  CAS  Google Scholar 

  26. Gao L, Zhao L, Huang X, Xu B, Yan Y, Huang J (2011) A surfactant type fluorescence probe for detecting micellar growth. J Colloid Interface Sci 354:256–260

    Article  CAS  PubMed  Google Scholar 

  27. Ananthapadmanabhan KP, Goddard ED, Turro NJ, Kuot PL (1985) Fluorescence probes for critical micelle concentration. Langmuir 1:352–355

    Article  PubMed  Google Scholar 

  28. Mehreteab A, Chen B (1995) Fluorescence technique for the determination of low critical micelle concentrations. J Am Oil Chem Soc 72:49–52

    Article  CAS  Google Scholar 

  29. Ahmadi MF, Rusling JF (1995) Fluorescence studies of solute microenvironment in. Composite clay-surfactant films, Langmuir 11:94–100

    CAS  Google Scholar 

  30. Karukstis KK, McDonough JR (2005) Characterization of the aggregates of N-Alkyl-N-methylpyrrolidinium bromide surfactants in aqueous solution. Langmuir 21:5716–5721

    Article  CAS  PubMed  Google Scholar 

  31. Mohr A, Talbiersky P, Korth H-G, Sustmann R, Boese R, Bläser D, Rehage H (2007) A new pyrene-based fluorescent probe for the determination of critical micelle concentrations. J Phys Chem B 111:12985–12992

    Article  CAS  PubMed  Google Scholar 

  32. Singh TS, Mitra S (2007) Fluorescence behavior of intramolecular charge transfer probe in anionic, cationic, and nonionic micelles. J Colloid Interface Sci 311:128–134

    Article  CAS  PubMed  Google Scholar 

  33. Selwyn JE, Steinfeld JI (1972) Aggregation of equilibriums of xanthene dyes. J Phys Chem 76:762–774

    Article  CAS  Google Scholar 

  34. Wong MM, Schelly ZA (1974) Solvent-jump relaxation kinetics of the association of Rhodamine type laser dyes. J Phys Chem 78:1891–1895

    Article  CAS  Google Scholar 

  35. Toptygin D, Packard BZ, Brand L (1997) Resolution of absorption spectra of Rhodamine 6G aggregates in aqueous solution using the law of mass action. Chem Phys Lett 277:430–435

    Article  CAS  Google Scholar 

  36. Genwa KR, Mahaveer (2007) Role of surfactant in the studies of solar energy conversion and storage: CTAB-Rhodamine 6G – oxalic acid system. Ind J Chem 46A:91–96

    CAS  Google Scholar 

  37. Tajalli H, Ghanadzadeh Gilani A, Zakerhamidi MS, Moghadam M (2009) Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions. Spectrochim Acta A 72:697–702

    Article  CAS  Google Scholar 

  38. Nag A, De AK, Goswami D (2009) Two-photon cross-section measurements using an optical chopper: z-scan and two-photon fluorescence schemes. J Phys B: At Mol Opt Phys 42:065103(1–9)

  39. Hung J, Castillo J, Olaizola AM (2003) Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation. J Lumin 101:263–268

    Article  CAS  Google Scholar 

  40. Wang W, Tai OY-H, Tsai WY, T-H CN-C (2005) Non-quadratic-intensity dependence of two-photon absorption induced fluorescence of organic chromophores in solution. J Chem Phys 122:084509

    Article  CAS  Google Scholar 

  41. Ghosh S, Roy A, Banik D, Kundu N, Kuchlyan J, Dhir A, Sarkar N (2015) How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO4)? Langmuir 31:2310–2320

    Article  CAS  PubMed  Google Scholar 

  42. Zeng J, Eckenrode HM, Dounce SM, Dai H-L (2013) Time-resolved molecular transport across living cell membranes. Biophys J 104:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DG thanks the support from the Wellcome Trust Senior Research Fellowship (UK) and Swarnajayanti Fellowship from DST, India for funding. SKM thanks UGC, India for graduate fellowship. We thank Mrs. S. Goswami for language check.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Yadav, D. & Goswami, D. Investigating Two-Photon-Induced Fluorescence in Rhodamine-6G in Presence of Cetyl-Trimethyl-Ammonium-Bromide. J Fluoresc 26, 1573–1577 (2016). https://doi.org/10.1007/s10895-016-1841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1841-0

Keywords

Navigation