Skip to main content
Log in

Influence of Solvation and Structural Contributions on Fluorescence of Dipyrrine Dyes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The results of quantum-chemical and spectral researches of zinc(II) complexes with alkylated dipyrrine and 3,3′-, 2,3′- and 2,2′-bis(dipyrrine)s in non-polar and polar solvents and their binary mixtures are presented. It was investigated the efficiency of the fluorescence quenching of fluorophores depending on of the solvation and structural contributions. Found that 3,3′-bis(dipyrrinato)zinc(II) demonstrates the highest sensitivity of the fluorescence to the presence of the electron-donor component compared with the studied complexes. The obtained results allow to offer dipyrrine and bis(dipyrrine) zinc(II) complexes as new, highly sensitive and selective fluorescent sensors of the N- and O-containing toxicants.

Influence of solvation and structural contributions on fluorescence of dipyrrine dyes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antina LA, Dudina NA, Guseva GB et al (2012) Characteristic features of formation, synthesis, and properties of binuclear zinc(II) helicates with alkyl-substituted 3,3′-bis(dipyrrolylmethenes). Russ J Inorg Chem 57:261–269. doi:10.1134/S0036023611120242

    Article  CAS  Google Scholar 

  2. Antina LA, Guseva GB, Vyugin AI et al (2012) Spectral and thermal properties of double-helicates binuclear Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with 3,3′-bis(dipyrrolylmethenes). Russ J Coord Chem 38:529–536

    Google Scholar 

  3. Marfin YS, Rumyantsev EV (2014) Analysis of solvation and structural contributions in spectral characteristics of dipyrrin Zn(II) complexes. Spectrochim Acta A Mol Biomol Spectrosc 130:423–428. doi:10.1016/j.saa.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  4. Kuznetsova RT, Aksenov YV, Orlovskaya OO et al (2012) Study photoprocesses in coordination compounds of zinc(II) and boron(III) with open chain oligopyrroles for use in optical devices. Russ J High Energ Chem 46:464–475

    Google Scholar 

  5. Filatov MA, Lebedev AY, Mukhin SN et al (2010) Pi-extended dipyrrins capable of highly fluorogenic complexation with metal ions. J Am Chem Soc 132:9552–9554. doi:10.1021/ja102852v

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gresser R, Hoyer A, Hummert M et al (2011) Homoleptic Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) complexes of bis-(phenyl)-diisoindol-aza-methene. Dalton Trans 40:3476–3483. doi:10.1039/c0dt01655a

    Article  CAS  PubMed  Google Scholar 

  7. Gutmann V (1976) Solvent effects on the reactivities of organometallic compounds. Coord Chem Rev 18:225–255. doi:10.1016/S0010-8545(00)82045-7

    Article  CAS  Google Scholar 

  8. Maeda H (2009) Acyclic oligopyrroles as building blocks of supramolecular assemblies. J Incl Phenom Macrocycl Chem 64:193–214. doi:10.1007/s10847-009-9568-z

    Article  CAS  Google Scholar 

  9. Maeda H (2010) Anion recognition in supramolecular chemistry. doi: 10.1007/978-3-642-15444-7

  10. Ding Y, Tang Y, Zhu W, Xie Y (2015) Fluorescent and colorimetric ion probes based on conjugated oligopyrroles. Chem Soc Rev 44:1101–1112. doi:10.1039/c4cs00436a

    Article  CAS  PubMed  Google Scholar 

  11. Antina EV, V’yugin AI (2012) Crystal solvates of porphyrins and metalloporphyrins. Russ J Gen Chem 82:1298–1306. doi:10.1134/S1070363212070201

    Article  CAS  Google Scholar 

  12. Byrn MP, Curtis CJ, Hsiou Y et al (1993) Porphyrin sponge: conservation of host structure in over 200 porfyrin-based lattice clathrates. J Am Chem Soc 115:9480–9497

    Article  CAS  Google Scholar 

  13. Hill CL, Williamson MM (1985) Isolation and characterization of the principal kinetic product in the preparation of a sterically hindered tetra-arylporphyrin: X-ray structure of a bis(dipyrromethene) complex of zinc, Zn II (C22H13Cl4N2)2· toluene. J Chem Soc Chem Commun 1228. doi: 10.1039/c39850001228

  14. Antina EV, Guseva GB, V’yugin AI (2006) Peculiarities of the interspecies interactions of metallocomplexes of structurally similar α, α-dipyrrolylmethene and porphyrin with organic solvents. Russ J Phys Chem 80:S1–S6. doi:10.1134/S0036024406130012

    Article  CAS  Google Scholar 

  15. Dudina NA, Antina EV, Guseva GB, Vyugin AI (2013) The high sensitive and selective “off-on” fluorescent zn2+ sensor based on the bis(2,4,7,8,9-pentamethyldipyrrolylmethene-3-yl)methane. J Fluoresc 24:13–17. doi:10.1007/s10895-013-1278-7

    Article  PubMed  Google Scholar 

  16. Zakharova SP, Rumyantsev EV, Antina EV (2005) Coordination of alkyl-substituted biladiene-a, c by zinc(II), cadmium(II), and mercury(II) acetates in dimethylformamide. Russ J Coord Chem 31:849–855. doi:10.1007/s11173-005-0180-5

    Article  CAS  Google Scholar 

  17. Berezin MB, Antina EV, Dudina NA et al (2011) Synthesis, structure and fluorescence of a zinc(II) chelate complex with bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane. Mendeleev Commun 21:168–170. doi:10.1016/j.mencom.2011.04.020

    Article  CAS  Google Scholar 

  18. Sheldrick WS, Engel J (1980) X-Ray crystal structure of the zinc complex of 1,2,3,7,8,12,13,17,18,19-decamethylbiladiene-a,c. J Chem Soc Chem Commun 5. doi: 10.1039/c39800000005

  19. Antina EV, Antina LA, Guseva GB et al (2014) Comparative analysis of physicochemical properties of dinuclear zinc(II) helicates with 2,2′-, 2,3′-, and 3,3′-bis(dipyrromethenes). Russ J Inorg Chem 59:578–586. doi:10.1134/S0036023614060023

    Article  CAS  Google Scholar 

  20. Antina EV, Gusev GB, Rumyantsev EV, Dudina NA (2009) Thermal properties of ligands, salts and metal complexes of linear oligopyrroles. Russ J Gen Chem 79:1900–1909. doi:10.1134/S1070363209090163

    Article  CAS  Google Scholar 

  21. Weissberger A, Proskauer E, Riddick J et al (1955) Organic solvents: physical properties and methods of purification. Interscience Publishers Inc., New York

    Google Scholar 

  22. Bruttel P, Schlink R (2003), Water determination by Karl Fischer titration. Metrohm Monograph

  23. Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260:115–118

    Article  CAS  Google Scholar 

  24. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  25. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346. doi:10.1063/1.469408

    Article  CAS  Google Scholar 

  26. Li W, Wang Y-B, Yang L-Y et al (2006) Spectroscopic and computational studies on the coordination-driven self-assembly complexes (ZnL)2 and (NiL)2 [L = bis(2,4-dimethyldipyrrin-3-yl)methane]. J Phys Chem B 110:21958–21965. doi:10.1021/jp063105i

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Yang F, Wang Z, et al. (2009) Theoretical studies on structures and spectroscopic properties of self-assembled bis(2,4,8,10-tetramethyl-9-methoxycarbonylethyldipyrrin-3-yl) methane with Co(II). 3375–3381

  28. Ksenofontov AA, Guseva GB, Antina EV, V’yugin AI (2014) Molecular structure of bis(dipyrrolylmethanates) of d-metals according to the quantum chemical calculations by the PM6 method. J Struct Chem 55:418–423. doi:10.1134/S0022476614030044

    Article  CAS  Google Scholar 

  29. Guseva GB, Ksenofontov AA, Antinа EV (2015) Theoretical studies on the electronic structure and spectroscopic properties of zinc(II) bis(dipyrrinate)s. Comput Theor Chem 1054:88–92. doi:10.1016/j.comptc.2014.12.018

    Article  CAS  Google Scholar 

  30. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  32. Teets TS, Partyka DV, Updegraff JB, Gray TG (2008) Homoleptic, four-coordinate azadipyrromethene complexes of d10 zinc and mercury. Inorg Chem 47:2338–2346. doi:10.1021/ic701190g

    Article  CAS  PubMed  Google Scholar 

  33. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  34. Antina EV, Kuznetsova RT, Antina LA et al (2015) New luminophors based on the binuclear helicates of d-metals with bis(dipyrrin)s. Dye Pigment 113:664–674. doi:10.1016/j.dyepig.2014.10.002

    Article  CAS  Google Scholar 

  35. Guseva GB, Antinа EV, Ksenofontov AA et al (2014) Composition and thermal stability of bis(dipyrrolylmethenato)zinc(II) crystal solvates with N, N-dimethylformamide. Thermochim Acta 589:31–36. doi:10.1016/j.tca.2014.05.007S

    Article  CAS  Google Scholar 

  36. Madhu S, Kalaiyarasi R, Basu SK et al (2014) A boron-dipyrrin–mercury(II) complex as a fluorescence turn-on sensor for chloride and applications towards logic gates. J Mater Chem C 2:2534. doi:10.1039/c3tc32188f

    Article  CAS  Google Scholar 

  37. McLean TM, Moody JL, Waterland MR, Telfer SG (2012) Luminescent rhenium(I)-dipyrrinato complexes. Inorg Chem 51:446–455. doi:10.1021/ic201877t

    Article  CAS  PubMed  Google Scholar 

  38. Lakowicz JR (2007) Principles of fluorescence spectroscopy. Springer Science & Business Media

  39. Alfimov MV, Koshkin AV, Sazhnikov VA (2014) A method for detecting amines in the gas phase. The patent of the Russian Federation № 2532238. Bulletin. № 30

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grant 15-43-03081-p_center_a).

We are grateful to the Interdisciplinary Supercomputer Center of the Russian Academy of Sciences (Moscow) for providing MBC 100 K cluster resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Guseva.

Additional information

Highlights

• Spectral properties of dipyrrin and bis(dipyrrin)s Zn(II) complexes in organic solvents were investigated.

• HOMO → LUMO transition makes the main contribution to manifestation of the fluorescence of the dipyrrine dyes.

• The fluorescence quenching of the dipyrrine dyes depends on the structural factors and of the medium polarity.

• Specific solvation strongly affects the fluorescence properties of the dipyrrine dyes.

• Dipyrrine dyes are recommended as the fluorescent sensors of the medium polarity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, A.A., Guseva, G.B., Antina, E.V. et al. Influence of Solvation and Structural Contributions on Fluorescence of Dipyrrine Dyes. J Fluoresc 25, 1875–1885 (2015). https://doi.org/10.1007/s10895-015-1680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1680-4

Keywords

Navigation