Skip to main content
Log in

Investigation of Tin Removal for Liquid Metal Tokamak Divertor by Low Pressure Argon Arc with Hot Tungsten Cathode System

  • Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The influence of a low-pressure argon arc with a hot tungsten cathode on the thin tin film with a negative bias voltage applied during the plasma treatment was investigated to study the tin film removal from the sample surface. Samples were prepared on a stainless-steel substrate using DC magnetron sputtering and hybrid HiPIMS assisted with electron cyclotron wave resonance (ECWR). During treatment an optical emission spectroscopy was employed to detect and characterize the emission line of tin spectrum and the electron density and temperature were measured by Langmuir probe. Morphological study by a scanning electron microscope helped to gain insight to the mechanism of tin removal from the substrate. In addition, elemental compositions of tin layer before and after treatment was measured by an energy dispersive X-ray spectroscopy. We believe that this study contributes to finding a proper treatment for tin removal from plasma facing surfaces of tokamaks using tin in the liquid metal divertor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author on a reasonable request.

References

  1. K. Ioki, A. Cardella, I. Elio, Y. Gohar, T. Iizuka, G. Johnson, G. Kalinin, D. Lousteau, K. Mohri, R. Parker, R. Raffray, R. Santoro, K. Shimizu, N. Tachakawa, T. Takahashi, D. Williamson, E. Zolti, In Proceedings of 16th International Symposium on Fusion Engineering, vol. 1 (Champaign, 1995), p. 150

  2. D.K. Yang, L.Y. Liao, Y.H. Li, G.Q. Zhong, X.J. Zhang, W. Zhang, B.L. Hao, L.Q. Hu, B.N. Wan, Z.M. Hu, Y.M. Zhang, G. Gorini, M. Nocente, M. Tardocchi, X.Q. Li, C.J. Xiao, T.S. Fan, Rev. Sci. Instrum. 93, 113501 (2022)

    Article  ADS  Google Scholar 

  3. N.A. Puntakov, A.A. Ayrapetov, L.B. Begrambekov, A.V. Grunin, S.S. Dovganyuk, A.S. Kaplevskiy, A.V. Tenishev, S.A. Grashin, I.I. Arkhipov, J. Phys. Conf. Ser. 1686, 012014 (2020)

    Article  Google Scholar 

  4. A.J.H. Donné, Philos. Trans. A Math. Phys. Eng. Sci. 377, 20170432 (2019)

    ADS  Google Scholar 

  5. W. Biel, M. Ariola, I. Bolshakova, K.J. Brunner, M. Cecconello, I. Duran, Th. Franke, L. Giacomelli, L. Giannone, F. Janky, A. Krimmer, R. Luis, A. Malaquias, G. Marchiori, O. Marchuk, D. Mazon, A. Pironti, A. Quercia, N. Rispoli, S. El Shawish, M. Siccinio, A. Silva, C. Sozzi, G. Tartaglione, T. Todd, W. Treutterer, H. Zohm, Fusion Eng. Des. 179, 113122 (2022)

    Article  Google Scholar 

  6. P. Rindt, J. Mata González, P. Hoogerhuis, P. van den Bosch, M. van Maris, D. Terentyev, C. Yin, M. Wirtz, N.J. Lopes Cardozo, J.A.W. van Dommelen, T.W. Morgan, Using 3D-printed tungsten to optimize liquid metal divertor targets for flow and thermal stresses. Nucl. Fusion 59(5), 054001 (2019). https://doi.org/10.1088/1741-4326/ab0a76

    Article  ADS  Google Scholar 

  7. S. Roccella, G. Dose, R. de Luca, M. Iafrati, A. Mancini, G. Mazzitelli, J. Fusion Energ. 39, 462 (2020)

    Article  Google Scholar 

  8. F.L. Tabarés, E. Oyarzabal, A.B. Martin-Rojo, D. Tafalla, A. de Castro, A. Soleto, Nucl. Fusion 57, 016029 (2017)

    Article  ADS  Google Scholar 

  9. T.W. Morgan, P. Rindt, G.G. van Eden, V. Kvon, M.A. Jaworksi, N.J. Lopes Cardozo, Plasma Phys. Control Fusion 60, 014025 (2018)

    Article  ADS  Google Scholar 

  10. J. Horacek, S. Entler, P. Vondracek, J. Adamek, D. Sestak, M. Hron, R. Panek, R. Dejarnac, V. Weinzettl, K. Kovarik, G. Van Oost, Plasma Phys. Rep. 44, 652 (2018)

    Article  ADS  Google Scholar 

  11. V. Kvon, R. Al, K. Bystrov, F.J.J. Peeters, M.C.M. van de Sanden, T.W. Morgan, Nucl. Fusion 57, 086040 (2017)

    Article  ADS  Google Scholar 

  12. J.H. You, G. Mazzone, E. Visca, Ch. Bachmann, E. Autissier, T. Barrett, V. Cocilovo, F. Crescenzi, P.K. Domalapally, D. Dongiovanni, S. Entler, G. Federici, P. Frosi, M. Fursdon, H. Greuner, D. Hancock, D. Marzullo, S. McIntosh, A.V. Müller, M.T. Porfiri, G. Ramogida, J. Reiser, M. Richou, M. Rieth, A. Rydzy, R. Villari, V. Widak, Fusion Eng. Des. 109, 1598 (2016)

    Article  Google Scholar 

  13. V. Pericoli Ridolfini, P. Chmielewski, I. Ivanova-Stanik, M. Poradziński, R. Zagórski, R. Ambrosino, Phys. Plasmas 27, 112506 (2020)

    Article  ADS  Google Scholar 

  14. W. Ou, F. Brochard, T.W. Morgan, Nucl. Fusion 61, 066030 (2021)

    Article  ADS  Google Scholar 

  15. A. Manhard, T. Schwarz-Selinger, M. Balden, T. Dürbeck, H. Maier, R. Neu, Nucl. Fusion 60, 106007 (2020)

    Article  ADS  Google Scholar 

  16. A. Cremona, E. Vassallo, E. Alves, F. Causa, S. De Iuliis, R. Dondè, G. Giacomi, G. Gervasini, G. Granucci, M. Iafrati, G. Maddaluno, R. Mateus, D. Minelli, V. Mellera, A. Nardone, M. Pedroni, D. Ricci, V. Rigato, N. Rispoli, A. Uccello, Nucl. Mater. Energy 17, 253 (2018)

    Article  Google Scholar 

  17. T.W. Morgan, D.C.M. Van den Bekerom, G. De Temmerman, J. Nucl. Mater. 463, 1256 (2015)

    Article  ADS  Google Scholar 

  18. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, Kenji Morita, R. Shimizu, H. Tawara, Energy dependence of the ion-induced sputtering yields of monatomic solids. Atom. Data Nucl. Data Tables 31(1), 1–80 (1984). https://doi.org/10.1016/0092-640X(84)90016-0

    Article  ADS  Google Scholar 

  19. P. Sigmund, Sputtering by ion bombardment theoretical concepts, in Sputtering by Particle Bombardment I. ed. by R. Behrisch (Springer Berlin Heidelberg, Berlin, Heidelberg, 1981), pp.9–71. https://doi.org/10.1007/3540105212_7

    Chapter  Google Scholar 

  20. J. Roth, W. Moller, Nucl. Instrum. Methods Phys. Res. B 7–8 (1985)

  21. R.P. Doerner, M.J. Baldwin, D.G. Whyte, S. Krasheninnikov, J. Nucl. Mater. 313, 383 (2003)

    Article  ADS  Google Scholar 

  22. R.W. Conn, R.P. Doerner, F.C. Sze, S. Luckhardt, A. Liebscher, R. Seraydarian, D.G. Whyte, Nucl. Fusion 42, 1060 (2002)

    Article  ADS  Google Scholar 

  23. J.P. Allain, M.D. Coventry, D.N. Ruzic, J. Nucl. Mater. 313, 641 (2003)

    Article  ADS  Google Scholar 

  24. M.D. Coventry, D.N. Ruzic, J. Nucl. Mater. 1015, 337 (2004)

    Google Scholar 

  25. M. Zanáška, J. Adámek, M. Peterka, P. Kudrna, M. Tichý, Phys. Plasmas 22, 033516 (2015)

    Article  ADS  Google Scholar 

  26. D. Lundin, M. Čada, Z. Hubička, J. Vac. Sci. Technol. A 34, 041305 (2016)

    Article  Google Scholar 

  27. H. Mishra, M. Tichý, P. Kudrna, Vacuum 205, 111413 (2022)

    Article  ADS  Google Scholar 

  28. M. Tichy, M. Sicha, P. David, T. David, Contrib. Plasma Phys. 34, 59 (1994)

    Article  ADS  Google Scholar 

  29. J. Bohdansky, J. Roth, H.L. Bay, J. Appl. Phys. 51, 2861 (1980)

    Article  ADS  Google Scholar 

  30. P.J. Kelly, R.D. Arnell, Vacuum 56, 159 (2000)

    Article  ADS  Google Scholar 

  31. J.G.A. Bitter, A study of erosion phenomena part I. Wear 6, 1 (1963)

    Google Scholar 

  32. Z. Ye, X. Ma, A. Wu, P. He, Z. Wang, Q. Yan, J. Wei, K. Zhang, F. Gou, J. Fusion Energ. 39, 86 (2020)

    Article  Google Scholar 

  33. A. Kramida, Yu Ralchenko, J. Reader, NIST ASD Team, In NIST Atomic Spectra Database. (2021) https://doi.org/10.18434/T4W30Fver.5.9

  34. J.S. Colligon, Vacuum 24, 373 (1974)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partial financial supported by Czech Science Foundation, Grant No. 24-10156S. The authors is grateful to RNDr. Adolf Kaňka Dr. for his informative discussion and useful recommendation in the field of optical emission spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, [MT]; Methodology, [TH], [TM], [ZT], [MT]; Validation, [TH], [MT], [PK] and [MČ]; Investigation, [TH], [ZT], [TM], [MT] and [MČ]; Data curation, [TH], [TM], [ZT], [MT]; Writing—original draft preparation, [TH] , [MČ], [TM] and [MT]; Writing—review and editing, [TH] and [MT]; Supervision, [MT] and [MČ]; Project administration, [MT] and [ZH] All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Himanshu Mishra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, H., Mašek, T., Turek, Z. et al. Investigation of Tin Removal for Liquid Metal Tokamak Divertor by Low Pressure Argon Arc with Hot Tungsten Cathode System. J Fusion Energ 42, 36 (2023). https://doi.org/10.1007/s10894-023-00374-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-023-00374-8

Keywords

Navigation