Skip to main content
Log in

Numerical Considerations for Neutral Beam Spectroscopy Based Diagnostics in the Stellarator TJ-II

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Two neutral-beam based diagnostic techniques are numerically evaluated for the stellarator TJ-II. The evaluation considers the beam from a dedicated diagnostic neutral beam injector that provides a 5 ms pulse of hydrogen accelerated to 30 keV as well as the light throughput of a dual purpose optical system that views the beam as it traverses the microwave, or neutral beam, heated plasmas of this magnetic confinement device. In the first instance, in which the implementation of the beam emission spectroscopy technique is considered for characterizing medium to long wavelength plasma turbulence, detailed estimates are made to determine the Balmer Hα light intensity reaching avalanche photodiode modules. In the second instance, similar detailed estimates are made for the spectrograph-based experimental set-up used for the Motional Stark Emission technique that has been successfully employed to determine the magnitude and direction of the internal magnetic field in TJ-II plasmas. In addition, optical measurements made to evaluate beam energy and composition are described. Finally, estimates and measurements are compared and discussed in order to complete this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.C. Isler, Plasma Phys. Control. Fusion 36, 171 (1994)

    Article  ADS  Google Scholar 

  2. F.M. Levinton et al., Phys. Rev. Lett. 63, 2060 (1989)

    Article  ADS  Google Scholar 

  3. A.R. Field et al., Rev. Sci. Instrum. 80, 073503 (2009)

    Article  ADS  Google Scholar 

  4. G.F. Abdrashitov et al., Rev. Sci. Instrum. 72, 34 (2001)

    Article  Google Scholar 

  5. K.J. McCarthy et al., Rev. Sci. Instrum. 75, 3499 (2004)

    Article  ADS  Google Scholar 

  6. L. Hausamman et al., Plasma Phys. Control. Fusion 59, 025017 (2017)

    Article  ADS  Google Scholar 

  7. F. Castejón et al., Nucl. Fusion 57, 102022 (2017)

    Article  ADS  Google Scholar 

  8. F.L. Tabarés et al., Contrib. Plasma Phys. 50, 610 (2010)

    Article  ADS  Google Scholar 

  9. K.J. McCarthy et al., Proceedings XXXIII Reunión Bienal de la Real Sociedad Española de Física, Santander, Spain; Part IV (PUbliCan, Santander, 2011), pp. 65–67

    Google Scholar 

  10. J. Arévalo et al., Nucl. Fusion 53, 023003 (2013)

    Article  ADS  Google Scholar 

  11. J.M. Carmona et al., Rev. Sci. Instrum. 77, 10F107 (2006)

    Article  Google Scholar 

  12. K.J. McCarthy et al., Contrib. Plasma Phys. 55, 459 (2015)

    Article  ADS  Google Scholar 

  13. T. Oishi et al., Rev. Sci. Instrum. 75, 4118 (2004)

    Article  ADS  Google Scholar 

  14. B. Liu et al., Nucl. Fusion 55, 112002 (2015)

    Article  ADS  Google Scholar 

  15. W. Mandl et al., Plasma Phys. Control. Fusion 35, 1373 (1993)

    Article  ADS  Google Scholar 

  16. A. Boileau et al., J. Phys. B: At. Mol. Opt. Phys. 22, L145 (1989)

    Article  Google Scholar 

  17. R.C. Wolf et al., Nucl. Fusion 33, 1835 (1993)

    Article  ADS  Google Scholar 

  18. N.A. Pablant et al., Rev. Sci. Instrum. 79, 10F517 (2008)

    Article  Google Scholar 

  19. E. Speth, Rep. Prog. Phys. 52, 57 (1989)

    Article  ADS  Google Scholar 

  20. J. Fu et al., J. Korean Phys. Soc. 58, 1141 (2011)

    Article  ADS  Google Scholar 

  21. J. Mlynar, “TCV DNBI Profile and Attenuation Studies with Code Manual”, Report LRP 692/01, CRPP EPFL, Lausanne

  22. F. Tabarés et al., J. Nucl. Mat. 290–295, 748 (2001)

    Article  ADS  Google Scholar 

  23. J.M. Fontdecaba et al., Plasma Fusion Res. 5, S2085 (2010)

    Article  Google Scholar 

  24. R.E. Bell, Rev. Sci. Instrum. 75, 4158 (2004)

    Article  ADS  Google Scholar 

  25. I.H. Hutchinson, Plasma Phys. Control. Fusion 44, 71 (2002)

    Article  ADS  Google Scholar 

  26. J. Herranz et al., Fusion Eng. Des. 65, 525 (2003)

    Article  Google Scholar 

  27. R.K. Janev et al., Elementary process in Hydrogen-helium Plasmas, Cross Sections and Reaction rate Coefficients (Springer, Berlin, 1987)

    Book  Google Scholar 

  28. https://www.andovercorp.com/

  29. D.Q. Nagasawa et al., Proc. SPIE 9908, 99085C (2016)

    Google Scholar 

  30. J. Loicq et al., Appl. Opt. 52, 8338 (2013)

    Article  ADS  Google Scholar 

  31. J.A. Arns et al., Proc. SPIE 3779, 313 (1999)

    Article  ADS  Google Scholar 

  32. K.J. McCarthy et al., EPL 120, 25001 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

KJM acknowledges financial support from the Spanish MICINN (FIS2017-89326R). This work was supported by the Ministerio de Ciencia, Innovación y Universidades under the Grant No BES-2015-075704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. McCarthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, K.J., Panadero, N. & López-Miranda, B. Numerical Considerations for Neutral Beam Spectroscopy Based Diagnostics in the Stellarator TJ-II. J Fusion Energ 39, 230–239 (2020). https://doi.org/10.1007/s10894-020-00248-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-020-00248-3

Keywords

Navigation