Skip to main content
Log in

Present State of Chinese Magnetic Fusion Development and Future Plans

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Chinese magnetic confinement fusion (MCF) development has made significant progress during the past decade. With successful construction and operation of the EAST superconducting tokamak, China is playing a key role in advanced steady-state operations towards the next step ITER. The Chinese Fusion Engineering Testing Reactor (CFETR) is the next device for the Chinese MCF program which aims to bridge the gaps between the fusion experiment ITER and the demonstration reactor DEMO. Fusion power of CFETR will be in the range of 200 MW to over 1 GW. It will be operated in two phases: Steady-state operation and tritium self-sustainment will be the two key issues for the first phase with a modest fusion power up to 200 MW. The second phase aims for DEMO validation with a fusion power over 1 GW. The Chinese government has approved to proceed with the CFETR engineering design, and the project started on December 2017. Roadmap of Chinese MCF, gaps for construction and operation of CFETR, efforts to fill these gaps and speedup the fusion energy application in China are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Hawryluk, S. Batha, W. Blanchard et al., Rev. Mod. Phys. 70, 537–587 (1998)

    Article  ADS  Google Scholar 

  2. M. Keilhacker, M.L. Watkins, JET Team, Nucl. Fusion 39, 209–234 (1999)

    Article  ADS  Google Scholar 

  3. F.Villone et al., in 34th EPS Conference Plasma Physics, Warsaw, Poland, vol. 31F, P-5.126 (2007)

  4. E. Joffrin et al., in 23nd IAEA Fusion Energy Conference, Daejeon, Korea, EXC/1-1 (2010)

  5. N. Oyama, A. Isayama, G. Matsunaga et al., Nucl. Fusion 49, 065026 (2009)

    Article  ADS  Google Scholar 

  6. A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)

    Article  ADS  Google Scholar 

  7. M. Fujiwara et al., Nucl. Fusion 40, 1157 (2000)

    Article  ADS  Google Scholar 

  8. Wan Yuanxi et al., Plasma Sci. Technol 8, 253 (2006)

    Article  Google Scholar 

  9. J. Li et al., Nucl. Fusion 51, 094007 (2011)

    Article  ADS  Google Scholar 

  10. G.S. Lee et al., Nucl. Fusion 40, 575 (2000)

    Article  ADS  Google Scholar 

  11. J. Kim et al., Phys. Rev. Lett. 72, 2199 (1994)

    Article  ADS  Google Scholar 

  12. ITER Physics, Nucl. Fusion 39, 2137 (1999)

    Article  ADS  Google Scholar 

  13. ITER Physics, Nucl. Fusion 47, S1 (2007)

    Article  Google Scholar 

  14. L.Y. Chang et al., Chin. Phys. Lett. 7, 16 (1990)

    Article  ADS  Google Scholar 

  15. J. Boliang et al., Nuclear Fusion Plasma Phys. 1986-03

  16. J.G. Li et al., in 15th IAEA, IAEA-CN-GO/AS-II 2, Oct 1994

  17. HL-1M TEAM, in Fusion Energy 1996 (Proceedings of 16th International Conference Montreal, 1996), vol. 1, IAEA, Vienna (1997), p. 693

  18. Y. Wan, Nucl. Fusion 40, 1057–1068 (2000)

    Article  ADS  Google Scholar 

  19. J. Li et al., in Proceedings of 17th IAEA Conference on Fusion Energy (Yokahama, Japan, 1998)

  20. X.R. Duan et al., Nucl. Fusion 50, 095011 (2010)

    Article  ADS  Google Scholar 

  21. M. Xu et al., Nucl. Fusion 55, 104022 (2015)

    Article  ADS  Google Scholar 

  22. B.N. Wan et al., Nucl. Fusion 45, S132 (2005)

    Article  Google Scholar 

  23. X. Gao et al., Nucl. Fusion 47, 1353 (2007)

    Article  ADS  Google Scholar 

  24. W.L. Zhong et al., Phys. Rev. Lett. 117, 045001 (2016)

    Article  ADS  Google Scholar 

  25. W. Chen et al., Nucl. Fusion 49, 075022 (2009)

    Article  ADS  Google Scholar 

  26. X.R. Duan et al., Nucl. Fusion 57, 102013 (2017)

    Article  ADS  Google Scholar 

  27. W.W. Xiao et al., Nucl. Fusion 52, 114027 (2012)

    Article  ADS  Google Scholar 

  28. W.L. Zhong et al., Plasma Phys. Control. Fusion 59, 014030 (2017)

    Article  ADS  Google Scholar 

  29. A. Ekedahl et al., in 2016 IAEA Fusion Energy Conference (Kyoto, Japan) EX/P7-34

  30. B.N. Wan, Nucl. Fusion 57, 102019 (2017)

    Article  ADS  Google Scholar 

  31. H.Y. Guo et al., Nucl. Fusion 54, 013002 (2014)

    Article  ADS  Google Scholar 

  32. J.S. Hu et al., Phys. Rev. Lett. 114, 055001 (2015)

    Article  ADS  Google Scholar 

  33. J. Li, H.Y. Guo et al., Nat. Phys. 9, 817 (2013)

    Article  Google Scholar 

  34. A.M. Garofalo et al., Nucl. Fusion 55, 123025 (2015)

    Article  ADS  Google Scholar 

  35. B. Wan et al., IEEE Trans. Plasma Sci. 42, 495–502 (2014)

    Article  ADS  Google Scholar 

  36. Y.T. Song et al., IEEE Trans. Plasma Sci. 42, 503–509 (2014)

    Article  ADS  Google Scholar 

  37. V. Chan et al., Nucl. Fusion 55, 023017 (2015)

    Article  ADS  Google Scholar 

  38. Y. Wan, J. Li, Y. Liu, Nucl. Fusion 57, 102009 (2017)

    Article  ADS  Google Scholar 

  39. J.X. Zheng et al., IEEE Trans. Appl. Supercond. 26(7), 4205505 (2016)

    Google Scholar 

  40. Y.T. Song et al., Fusion Eng. Des. 89, 2331–2335 (2014)

    Article  Google Scholar 

  41. A.Y. Cheng et al., Plasma Sci. Technol 18(2), 202–205 (2016)

    Article  ADS  Google Scholar 

  42. X. Jian et al., Nucl. Fusion 57, 046012 (2017)

    Article  ADS  Google Scholar 

  43. J.L. Chen et al., Plasma Phys. Controll. Fusion 59, 075005 (2017)

    Article  ADS  Google Scholar 

  44. S.H. Wang et al., Fusion Eng. Des. 112, 148–155 (2016)

    Article  Google Scholar 

  45. K.C. Jiang et al., Fusion Eng. Des. 114, 57–71 (2017)

    Article  Google Scholar 

  46. J. Li et al., Fusion Eng. Des. 113, 37–42 (2016)

    Article  Google Scholar 

  47. Z.X. Li, Activities on He-cooled ceramic blanket for CFETR. Presented at Technical exchange meeting on CFETR and EU-DEMO fusion reactor design, 19–22 Jan 2016, Garching, Germany

  48. 作者:Q. Zhu, J. Li, S. Liu, Plasma Sci. Technol. 18, 775–780 (2016)

  49. L. Chen, Y. Chen, K. Huang et al., Fusion Eng. Des. 106, 1–8 (2016)

    Article  Google Scholar 

  50. G.S. Li et al., Rev. Sci. Instrum. 87, 11D401 (2016)

    Article  Google Scholar 

  51. F. Wang, Y. Chen, L. Hu et al., J. Fusion Energ. 34, 1077–1087 (2015)

    Article  Google Scholar 

  52. UKAEA September 2007 (revised/improved version of original table in UKAEA FUS 521, 2005)

Download references

Acknowledgements

Funding was provided by Institute of Plasma Physics, Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wan, Y. Present State of Chinese Magnetic Fusion Development and Future Plans. J Fusion Energ 38, 113–124 (2019). https://doi.org/10.1007/s10894-018-0165-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-018-0165-2

Keywords

Navigation