Skip to main content
Log in

A concept of very high ratio gas compression device

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

A very high ratio gas compression device based on liquid metal conical implosion is described in this paper, which can reach a compression ratio up to 109–12. This device can produce extremely high density, high pressure, and high temperature, thermally equilibrated states by rapid but continuous compression of gaseous materials. The changes in the state parameters (temperature, pressure, density, radiation, line emission, Doppler broadening, dissociation, ionization) of the compressed material can be monitored over a very wide temperature range up to a million Kelvin. Potential applications of the device include many research fields such as chemical molecule property analyses, high density plasma production, high pressure physics, molecular and atomic physics, intermediate density nuclear fusion, sonoluminescence, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. W.W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine (Prentice Hall, Upper Saddle River, 1997)

    Google Scholar 

  2. R. Stone, Introduction to Internal Combustion Engines (Macmillan, London, 1992)

    Book  Google Scholar 

  3. R.H. Perry, D.W. Green, Perry’s Chemical Engineers’ Handbook (McGraw Hill, New York, 2007)

    Google Scholar 

  4. M.P. Brenner, S. Hilgenfeldt, D. Lohse et al., Rev. Mod. Phys. 74, 425 (2002)

    Article  ADS  Google Scholar 

  5. D.F. Gaitan et al., J. Acoust. Soc. Am. 91, 3166–3183 (1992)

    Article  ADS  Google Scholar 

  6. S. Atzeni, J. Meyer-ter-Vehnc, The Physics of Inertial Fusion (Clarendon Press, Oxford, 2004)

    Book  Google Scholar 

  7. J. Lindl, Phys. Plasmas 2, 3933–4024 (1995)

    Article  ADS  Google Scholar 

  8. J. Lindl et al., Phys. Plasmas 11, 339–491 (2004)

    Article  ADS  Google Scholar 

  9. Q. Chen et al., Chin. Phys. 14, 826 (2005)

    Article  ADS  Google Scholar 

  10. S.M. Plesset, A. Prosperetti, Ann. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  ADS  Google Scholar 

  11. A. Prosperetti, A. Lezzi, J. Fluid Mech. 168, 457–478 (1986)

    Article  ADS  Google Scholar 

  12. C. Li, Y. Lei, J. Fusion Energ. (2016). doi:10.1007/s10894-016-0099-5

    Google Scholar 

  13. V. Sobolev et al., J. Nucl. Mater. 362, 235–247 (2007)

    Article  ADS  Google Scholar 

  14. W.C. Moss et al., Phys. Fluids 6, 2979–2985 (1994)

    Article  ADS  Google Scholar 

  15. B.E. Noltingk, E.A. Neppiras, Proc. Phys. Soc. Lond. Sect. B 68, 674 (1950)

    Article  ADS  Google Scholar 

  16. J.B. Keller, M. Miksis, J. Acoust. Soc. Am. 68, 628 (1980)

    Article  ADS  Google Scholar 

  17. M. Koenig et al., Plasma Phys. Control. Fusion 47, B441–B449 (2005)

    Article  Google Scholar 

  18. V.B. Mintsev, V.E. Fortov, J. Phys. A: Math. Gen. 39, 4319 (2006)

    Article  ADS  Google Scholar 

  19. W.J. Nellis, Rep. Prog. Phys. 69, 1479 (2006)

    Article  ADS  Google Scholar 

  20. M.D. Knudson, D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, W.W. Anderson, Phys. Rev. Lett. 87, 225501 (2001)

    Article  ADS  Google Scholar 

  21. M.D. Knudson, D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, Phys. Rev. Lett. 90, 035505 (2003)

    Article  ADS  Google Scholar 

  22. M.D. Knudson, D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, C. Deeney, Phys. Rev. B 69, 144209 (2004)

    Article  ADS  Google Scholar 

  23. R. Cauble et al., Phys. Plasmas 4, 1857 (1997)

    Article  ADS  Google Scholar 

  24. A.J. Mackinnon et al., Rev. Sci. Instrum. 75(10), 3531–3536 (2004)

    Article  ADS  Google Scholar 

  25. R.W. Lee et al., JOSA B 20(4), 770–778 (2003)

    Article  ADS  Google Scholar 

  26. O. Ciricosta et al., Phys. Rev. Lett. 109(6), 065002 (2012)

    Article  ADS  Google Scholar 

  27. G.W. Collins et al., Science 281(5380), 1178–1181 (1998)

    Article  ADS  Google Scholar 

  28. L.M. Barker, R.E. Hollenbach, J. Appl. Phys. 43, 4669 (1972)

    Article  ADS  Google Scholar 

  29. Y.C. Francis Thio, J. Phys. Conf. Ser. 112, 042084 (2008)

    Article  Google Scholar 

  30. D. Sinars et al., Z-Beamlet Laser Preheat and Experimental Capabilities, No. SAND2012-1734C (Sandia National Laboratories, Albuquerque, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yian Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, J. & Lei, Y. A concept of very high ratio gas compression device. J Fusion Energ 35, 776–780 (2016). https://doi.org/10.1007/s10894-016-0104-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0104-z

Keywords

Navigation