Skip to main content
Log in

Laser Shadowgraphic Study of the Influence of Krypton-Seeding, Switch Synchronization and Electrode Geometry on Plasma Dynamic in Plasma Focus Device

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Laser shadowgraphy has been used to investigate the plasma sheath dynamics in a miniature plasma focus device (FMPF-3, 14 kV/235 J). The occurrence of magneto-hydro-dynamics instabilities are compared for pure deuterium versus deuterium–krypton admixture operation, over the range of gas pressures 2–12 mbar. A cathode-less geometry was also tested to study the influence of cathode configuration on current sheath formation and compression. The average neutron yield, measured using 3He proportional counters, is compared for different geometries and gas pressures. The synchronization of the four pseudo-spark-gap switches was found to be a major factor influencing the plasma sheath dynamics and neutron yield. To make a fair comparison of operation with different gas pressures or admixture proportions, the level of switch synchronization must be in the same range. Laser shadowgraphs of early stage dynamics show that poorly synchronized discharges result in asymmetric plasma sheath formation, and asymmetries in the accelerated sheath typically persist till the end of the final compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Verma, R.S. Rawat, P. Lee, S.V. Springham, T.L. Tan, J. Fusion Energ. 32(1), 2–10 (2013)

    Article  ADS  Google Scholar 

  2. S.M.P. Kalaiselvi, T.L. Tan, A. Talebitaher, P. Lee, R.S. Rawat, Phys. Lett. A 377, 1290–1296 (2013)

    Article  ADS  Google Scholar 

  3. S.M.P. Kalaiselvi, T.L. Tan, A. Talebitaher, P. Lee, R.S. Rawat, Phys. Lett. A 378, 804–809 (2014)

    Article  ADS  Google Scholar 

  4. R. Verma, P. Lee, S. Lee, S.V. Springham, T.L. Tan, R.S. Rawat, M. Krishnan, Appl. Phys. Lett. 93, 101501 (2008)

    Article  ADS  Google Scholar 

  5. R. Verma, R.S. Rawat, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Phys. Lett. A 373, 2568–2571 (2009)

    Article  ADS  Google Scholar 

  6. S. Lee, S.H. Saw, J. Ali, J. Fusion Energ. 32, 42–49 (2013)

    Article  ADS  Google Scholar 

  7. S. Lee, Aust. J. Phys. 35, 891–895 (1983)

    Article  ADS  Google Scholar 

  8. S.V. Springham, A. Talebitaher, P.M.E. Shutler, S. Lee, R.S. Rawat, P. Lee, Appl. Phys. Lett. 101, 114104 (2012)

    Article  ADS  Google Scholar 

  9. P.M.E. Shutler, S.V. Springham, A. Talebitaher, Nucl. Instr. Methods Phys. Res. Sect. A 709, 129–142 (2013)

    Article  ADS  Google Scholar 

  10. Y. Yamada, Y. Kitagawa, I. Tsuda, M. Yokoyama, J. Phys. Soc. Jpn. 49, 433 (1980)

    Article  ADS  Google Scholar 

  11. S. Lee, M.A. Alabraba, A.V. Gholap, S. Kumar, K.H. Kwek, M. Nisar, R.S. Rawat, J. Singh, IEEE Trans. Plasma Sci. 18(6), 1028–1032 (1990)

    Article  ADS  Google Scholar 

  12. L. Soto, C. Pavez, F. Castillo, F. Veloso, J. Moreno, S.K.H. Auluck, Phys. Plasmas 21(7), 072702 (2014)

    Article  ADS  Google Scholar 

  13. K.N. Mitrofanov, V.I. Krauz, P. Kubes, M. Scholz, M. Paduch, E. Zielinska, Plasma Phys. Rep. 40(8), 623–639 (2014)

    Article  ADS  Google Scholar 

  14. T. Zhang, X. Lin, K.A. Chandra, T.L. Tan, S.V. Springham, A. Patran, P. Lee, S. Lee, R.S. Rawat, Plasma Sour. Sci. Technol. 14(1), 368–374 (2005)

    Article  ADS  Google Scholar 

  15. H. Krompholz, W. Neff, F. Ruhl, K. Schonbach, G. Herziger, Phys. Lett. A 77, 246 (1980)

    Article  ADS  Google Scholar 

  16. W. Kies, Plasma Phys. Contr. Fusion 28, 1645 (1986)

    Article  ADS  Google Scholar 

  17. M. Lu, M. Han, T. Yang, C. Luo, T. Miyamoto, IEEE Trans. Plasma Sci. 29, 973 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported by AcRF Tier 1 research Grant No. RP1/11RSR provided by Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Rawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebitaher, A., Kalaiselvi, S.M.P., Springham, S.V. et al. Laser Shadowgraphic Study of the Influence of Krypton-Seeding, Switch Synchronization and Electrode Geometry on Plasma Dynamic in Plasma Focus Device. J Fusion Energ 34, 794–801 (2015). https://doi.org/10.1007/s10894-015-9888-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-015-9888-5

Keywords

Navigation