Skip to main content

Advertisement

Log in

Three Game Changing Discoveries: A Simpler Fusion Concept?

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

This paper encourages exploration of a broad range of magnetic fusion concepts in parallel with mainline tokamak development. Such exploration will certainly lead to increased understanding of fusion science and possibly to an attractive fusion energy concept. As an example, this paper describes three discoveries which greatly increase the attractiveness of the magnetic mirror plasma confinement concept. The mirror concept is thought to have three unattractive characteristics. The magnets are complex, the plasma is plagued with micro-instabilities and the electron temperature would never approach required keV levels. Persistent research on the gas dynamic trap device at the Budker Institute of Nuclear Physics in Russia and elsewhere have overcome these three deficiencies. Stable high energy density plasma can be confined with simple circular magnets, micro-instabilities can be tamed, and electron temperatures reaching a keV have been measured. These three accomplishments provide a basis to reconsider the mirror concept as a neutron source for medical applications, fusion materials development, nuclear fuel production, and fusion energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V.V. Mirnov, D.D. Ryutov, Linear gas dynamic system for plasma confinement. Sov. Tech. Phys. Lett. 5, 279 (1979)

    Google Scholar 

  2. A.A. Ivanov, V.V. Prikhodko, Gas Dynamic trap: an overview of the concept and experimental results. Plasma Phys. Control. Fusion 55, 063001 (2013)

    Article  ADS  Google Scholar 

  3. T.C. Simonen et al., Operation of the tandem-mirror experiment with skew neutral beam injection. Phys. Rev. Lett. 50, 1668 (1983)

    Article  ADS  Google Scholar 

  4. P.A. Bagryansky et al., Overview of ECR plasma heating experiment in the GDT magnetic mirror. Nucl. Fusion 55, 053009 (2015)

    Article  ADS  Google Scholar 

  5. P.A. Bagryanski et al., Threefold increase of the bulk electron temperature of plasma discharges in a magnetic mirror device. Phys. Rev. Lett. 114, 205001 (2015)

    Article  ADS  Google Scholar 

  6. U. Fischer, A. Moeslang, A.A. Ivanov, Assessment of the gas dynamic trap mirror facility as an intense neutron source for fusion material test irradiations. Fusion Eng. Design 48, 307 (2000)

    Article  Google Scholar 

  7. D.D. Ryutov et al., A high-flux source of fusion neutrons for material and component testing. J. Fusion Energ. 17, 253 (1998)

    Article  ADS  Google Scholar 

  8. A.V. Anikeev et al., The plasma neutron source as a driver in a sub-critical reactor, in 11th Conference on Energy and Environment, Cairo, Egypt, March 15–18, 2009

  9. K. Noack et al., The GDT-based fusion neutron source as a driver of a minor actinides burner. Annu. Nucl. Energy 35, 1216 (2008)

    Article  Google Scholar 

  10. R.W. Moir et al., Mirror-based hybrids of recent design. AIP Conf. Proc. 1442, 346 (2012)

    Article  ADS  Google Scholar 

  11. T.C. Simonen et al., A 14 MeV fusion neutron source for material and blanket development and fission fuel production. Nucl. Fusion 53, 063002 (2013)

    Article  ADS  Google Scholar 

  12. D.D. Hua, T.K. Fowler, in LLNL Report UCRL-ID-204783, June 14, 2004

  13. S.J. Zinkle, Fusion material science: overview of challenges and recent progress. Phys. Plasmas 12, 058101 (2005)

    Article  ADS  Google Scholar 

  14. V.B. Gott et al., Some new results on plasma confinement in magnetic traps, in Proceedings of 1961 Conference on Plasma Physics and Controlled Nuclear Fusion Research, part 3 supplement, p1045, 1962

  15. T.C. Simonen, Experimental progress in magnetic-mirror fusion research. Proc. IEEE 69, 935 (1981)

    Article  ADS  Google Scholar 

  16. D.D. Ryutov et al., Magneto-hydrodynamically stable axisymmetric mirrors. Phys. Plasmas 18, 092301 (2011)

    Article  ADS  Google Scholar 

  17. P.A. Bagryansky et al., Confinement of hot ion plasma with beta = 0.6 in the gas dynamic trap. Fusion Sci. Technol. 59, 31 (2011)

    Google Scholar 

  18. R.F. Post, M.M. Rosenbluth, Electrostatic instabilities in finite mirror-confined plasmas. Phys. Fluids 9, 730 (1965)

    Article  ADS  Google Scholar 

  19. M.S. Ioffe et al., Stabilization of conical instability of a collisional plasma in a mirror trap. Zh. Eksp. Teor. Fiz. 67, 2145 (1974)

    ADS  Google Scholar 

  20. G.I. Dimov et al., Thermonuclear confinement system with twin mirrors. Sov. J. Plasma Phys. 2, 326 (1976)

    ADS  Google Scholar 

  21. T.K. Fowler, B.G. Logan, The tandem mirror reactor. Comments Plas. Phys. 2, 167 (1977)

    Google Scholar 

  22. D. Launois et al., Contribution of Coulomb collisions to plasma relaxation in the DECA mirror machine. Nucl. Fusion 12, 673 (1972)

    Article  Google Scholar 

  23. J. Kesner, Inverse ambipolar potential in a magnetic mirror. Plasma Phys. 15, 577 (1973)

    Article  ADS  Google Scholar 

  24. J. Kesner, Axisymetric plugging cells containing injected sloshing ions. Nucl. Fusion 20, 557 (1980)

    Article  ADS  Google Scholar 

  25. B.W. Stallard, ECH in tandem mirror machines. Plasma Sci. IEEE Trans. 12, 134 (1984)

    Article  ADS  Google Scholar 

  26. M. Mauel, Electron cyclotron heating in a pulsed mirror experiment. Phys. Fluids 27, 2899 (1984)

    Article  ADS  Google Scholar 

  27. D.D. Ryutov, Axial electron heat loss from mirror devices revisited. Trans. Fusion Sci. Technol. 47, 148 (2005)

    Google Scholar 

  28. A.W. Molvik et al., See section V of “A gas dynamic trap neutron source for fusion material and subcomponent testing”. Fusion Sci. Technol. 57, 369 (2010)

    Google Scholar 

  29. T.C. Simonen, Extrapolation of GDT results to a neutron source for fusion materials testing. Fusion Sci. Technol. 59, 36 (2011)

    Google Scholar 

  30. D.E. Baldwin, End-loss processes from mirror machines. Rev. Mod. Phys. 49, 317 (1977)

    Article  ADS  Google Scholar 

  31. R.F. Post, The magnetic mirror approach to fusion. Nuc. Fusion 27, 1579 (1987)

    Article  Google Scholar 

  32. D.D. Ryutov, Open-ended traps. Sov. Phys. Usp. 31, 300 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Hershkowitz, Mirror devices. Nucl. Fusion 30, 1761 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Peter Bagryansky, Alexander Ivanov, Ralph Moir, Art Molvik, Dimitri Ryutov and many former colleagues for valuable discussions. Fundamentals of magnetic mirror confinement can be found in References [3033] in which the late fusion pioneer Richard F. Post played a seminal role.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Simonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonen, T.C. Three Game Changing Discoveries: A Simpler Fusion Concept?. J Fusion Energ 35, 63–68 (2016). https://doi.org/10.1007/s10894-015-0017-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-015-0017-2

Keywords

Navigation