Skip to main content
Log in

Influence of the Generation of Gas Bubbles in Flooded Lead–Acid Batteries on Their Thermal Behavior

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The thermal behavior of flooded lead–acid batteries with different distances between their electrodes, in which there takes place a temperature rise, was investigated at different rates of charging and discharging of these batteries with the use of the PIV method. It was established that, in the case of small rates of charging and discharging of such a battery, a decrease in the distance between its electrodes leads to a decrease in the temperature rise and in the heat generation in it, while, in the case where these rates are large, the opposite effects take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. McKinney, G. L. Wierschem, and E. N. Mrotek, Thermal management of lead–acid batteries for electric vehicles, SAE Int. Congress and Exposition. SAE Technical Paper 830229 (1983); https://doi.org/10.4271/830229.

  2. F. Torabi and V. Esfahanian, Study of thermal-runaway in batteries. I. Theoretical study and formulation, J. Electrochem. Soc., 158, No. 8, Article ID 850 (2011).

  3. Z. Rao and S. Wang, A review of power battery thermal energy management, Renew. Sustain. Energy Rev., 15, 4554–4571 (2011).

    Article  CAS  Google Scholar 

  4. K. F. Sökmen and M. Çavuş, Review of batteries thermal problems and thermal management systems, J. Innov. Sci. Eng., 1, No. 1, 35–55 (2017).

    Google Scholar 

  5. W. Tiedemann and J. Newman, Mathematical modeling of the lead–acid cell, in S. Gross (Ed.), Battery Design and Optimization, Princeton, NJ (1979), p. 23.

  6. D. Bernardi, E. Pawlikowski, and J. Newman, A general energy balance for battery systems, J. Electrochem. Soc., 132, No. 5 (1985); https://doi.org/10.1149/1.2113792.

  7. W. G. Sunu, Mathematical model for design of battery electrodes: Lead–acid cell modelling, in: Ralph E. White (Ed.), Electrochemical Cell Design, Springer US, Boston (1984), pp. 357–375.

    Chapter  Google Scholar 

  8. H. Gu, T. V. Nguyen, and R. E. White, A mathematical model of a lead–acid cell, J. Electrochem. Soc., 134, No. 12 (1987); https://doi.org/10.1149/1.2100322.

  9. F. Alavyoon, A. Eklund, F. H. Bark, R. I. Karlsson, and D. Simonsson, Theoretical and experimental studies of free convection and stratification of electrolyte in a lead–acid cell during recharge, Electrochim. Acta, 36, 2153–2164 (1991).

    Article  CAS  Google Scholar 

  10. A. Eklund and R. I. Karlsson, Free convection and stratification of electrolyte in the lead–acid cell without/with a separator during cycling, Electrochim. Acta, 37, 681–694 (1992).

    Article  CAS  Google Scholar 

  11. J. Landfors, D. Simonsson, and A. Sokirko, Mathematical modelling of a lead/acid cell with immobilized electrolyte, J. Power Sources, 55, 217–230 (1995).

    Article  CAS  ADS  Google Scholar 

  12. W. B. Gu, C. Y. Wang, and B. Y. Liaw, Numerical modeling of coupled electrochemical and transport processes in lead–acid batteries, J. Electrochem. Soc., 144, Article ID 2053 (1997).

  13. S. C. Kim and W. H. Hong, Analysis of the discharge performance of a flooded lead/acid cell using mathematical modelling, J. Power Sources, 77, 74–82 (1999).

    Article  CAS  ADS  Google Scholar 

  14. W. B. Gu and C. Y. Wang, Thermal-electrochemical modeling of battery systems, J. Electrochem. Soc., 147, No. 8, 2910–2922 (2000).

    Article  CAS  ADS  Google Scholar 

  15. V. Esfahanian and F. Torabi, Numerical simulation of lead–acid batteries using Keller-box method, J. Power Sources, 158, No. 2, 949–952 (2006).

    Article  CAS  ADS  Google Scholar 

  16. K. Siniard, M. Xiao, and S. Y. Choe, One-dimensional dynamic modeling and validation of maintenance-free lead–acid batteries emphasizing temperature effects, J. Power Sources, 195, 7102–7114 (2010).

    Article  CAS  ADS  Google Scholar 

  17. V. Esfahanian, A. B. Ansari, H. Bahramian, P. Kheirkhah, and G. Ahmadi, Design parameter study on the performance of lead–acid batteries, J. Mech. Sci. Technol., 28, No. 6, 2221–2229 (2014).

    Article  Google Scholar 

  18. V. Esfahanian, A. B. Ansari, and F. Torabi, Simulation of lead–acid battery using model order reduction, J. Power Sources, 279, 294–305 (2015).

    Article  CAS  ADS  Google Scholar 

  19. H. Pourmirzaagha, V. Esfahanian, F. Sabetghadam, and F. Torabi, Single and multi-objective optimization for the performance enhancement of lead–acid battery cell, Int. J. Energy Res., 40, No. 14, 1966–1978 (2016).

    Article  CAS  Google Scholar 

  20. B. Ansari, V. Esfahanian, and F. Torabi, Discharge, rest and charge simulation of lead–acid batteries using an efficient reduced order model based on proper orthogonal decomposition, Appl. Energy, 173, 152–167 (2016).

    Article  CAS  ADS  Google Scholar 

  21. T. Nazghelichi, F. Torabi, and V. Esfahanian, Prediction of temperature behavior of a lead–acid battery by means of Lewis number, Electrochim. Acta, 275, 192–199 (2018).

    Article  CAS  Google Scholar 

  22. M. H. Malekshah, E. H. Malekshah, M. Salari, A. Rahimi, and M. Rahjoo, Thermal analysis of a cell of lead–acid battery subjected by non-uniform heat flux during natural convection, Therm. Sci. Eng. Prog., 5, 317–326 (2018).

    Article  Google Scholar 

  23. M. Salari, A. Kasaeipoor, and E. H. Malekshah, Influence of static bubbles at the surface of electrodes on the natural convection flow for application in high performance lead–acid battery, Therm. Sci. Eng. Prog., 5, 204–212 (2018).

    Article  Google Scholar 

  24. M. Salari, E. H. Malekshah, M. R. Sarlak, M. H. Malekshah, and M. Pilfoush, Hydrothermal investigation of a stratified system in enclosure with jagged surface for application in lead–acid batteries, Multidiscip. Model. Mater. Struct., 15, No. 7 (2018).

  25. S. Nahidi, I. J. Gavzan, S. Saedodin, and M. Salari, Measurement of the electrolyte flow velocity and bubbles characterization during electrochemical reactions in lead–acid batteries using the PIV system, J. Ind. Eng. Chem. (2020); https://doi.org/10.1016/j.jiec.2020.01.035.

    Article  Google Scholar 

  26. T. Nazghelichi, F. Torabi, and V. Esfahanian, Non-dimensional analysis of electrochemical governing equations of lead–acid batteries, J. Energy Storage, 27, 101–120 (2020).

    Article  Google Scholar 

  27. U. Ullum, Imaging Techniques for Planar Velocity and Concentration Measurements, Technical University of Denmark, Denmark (1999).

    Google Scholar 

  28. J. Westerweel, D. Dabiri, and M. Gharib, The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings, Exp. Fluids, 23, No. 1, 20–28 (1997).

    Article  Google Scholar 

  29. J. Chen and J. Katz, Elimination of peak-locking error in PIV analysis using the correlation mapping method, Measur. Sci. Technol., 16, No. 8, Article ID 1605 (2005).

  30. M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry. A Practical Guide: Springer (2018).

    Book  Google Scholar 

  31. A. A. Mokarrab, Ah. M. Az my, and S. A. Mahmoud, Effect of process parameters on the dynamic behavior of polymer electrolyte membrane fuel cells for electric vehicle applications, Ain Shams Eng. J., 5, No. 1, 75–84 (2014).

  32. D. Linden and T. Reddy, L inden's Handbook of Batteries, McGraw Hill Professional (2011).

  33. M. Kuroda, A. Sakakibara, T. Sasaki, Y. Murai, N. Nagai, and F. Yamamoto, PIV study on buoyant bubble flows in a small electrolytic cell, Jpn. J. Multiphase Flow, 22, No. 2, 161–174 (2008).

    Article  Google Scholar 

  34. M. Wang, Z. Wan, X. Gong, and Z. Guo, The intensification technologies to water electrolysis for hydrogen production — A review, Renew. Sustain. Energy Rev., 29, 573–588 (2014).

    Article  CAS  Google Scholar 

  35. A. Taqieddin, R. Nazari, L. Rajic, and A. Alshawabkeh, Review — Physicochemical hydrodynamics of gas bubbles in two-phase tlectrochemical systems, J. Electrochem. Soc., 164, No. 13, E448–E459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. Weier and S. Landgraf, The two-phase flow at gas-evolving electrodes: Bubble-driven and Lorentz-force-driven convection, Eur. Phys. J. Spec. Topics, 220, 313–322 (2013).

    Article  CAS  ADS  Google Scholar 

  37. R. Hreiza, L. Abdelouahed, D. Fünfschilling, and F. Lapicque, Electrogenerated bubbles induced convection in narrow vertical cells: A review, Chem. Eng. Res. Des., 100, 268–281 (2015).

    Article  Google Scholar 

  38. D. Pavlov, LeadAcid Batteries Science and Technology, Elsevier: Amsterdam (2011).

    Google Scholar 

  39. H. A. Kiehne, Battery Technology Handbook, Expert Verlag (2003).

  40. J. Jung, L. Zhang, and J. Zhang, LeadAcid Battery Technologies: Fundamentals, Materials, and Applications, Taylor and Francis Group (2015).

  41. P. C. Bhatia, Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions, Ohio State University (2013).

  42. D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York (2019).

    Google Scholar 

  43. R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product Optimization Using Design of Experiments, John Wiley & Sons, New York (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nahidi.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 97, No. 1, pp. 64–77, January–February, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahidi, S., Salari, M., Gavzan, I.J. et al. Influence of the Generation of Gas Bubbles in Flooded Lead–Acid Batteries on Their Thermal Behavior. J Eng Phys Thermophy 97, 63–77 (2024). https://doi.org/10.1007/s10891-024-02868-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-024-02868-4

Keywords

Navigation