Skip to main content
Log in

Characteristics of a Typical Indoor Seat of Fire

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The paper presents the results of experimental investigations of the main characteristics of a typical indoor seat of fire at the stages of initiating the ignition of combustible materials and in the process of their burning. Wood material, wood fiberboard, linoleum, and plastic panels have been used as combustible materials. We registered the characteristics of the seat of fire, viz., the temperature in the zone of burning of combustible materials, the times of termination of their flame combustion, and thermal decomposition, the concentrations of gaseous products of pyrolysis and combustion of these materials. The possibility of indentifying the material dominating in the seat of fire has been substantiated. Reliable identification of such material makes it possible to optimize the process of suppressing the seat of fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Araujo Lima et al., Exploratory analysis of fire statistical data and prospective study applied to security and protection systems, Int. J. Disast. Risk Reduct., 61, Article ID 102308 (2021).

  2. N. N. Brushlinsky, M. Ahrens, and S. V. Sokolov, World Fire Statistics, Berlin (2020).

  3. I. V. Kachanov, V. V. Veremenyuk, I. V. Karpenchuk, and S. Y. Pavlyukov, Possibility of increasing the fire-suppression efficiency of the foam in automatic extinguishing installations, J. Eng. Phys. Thermophys., 86, No. 3, 525–533 (2013).

    Article  Google Scholar 

  4. I. I. Polevoda, I. V. Karpenchuk, M. Y. Striganova, and É. É. Shatilo, Model of turbulent flow of rheological solutions of foaming agents in channels of automatic fire-extinguishing systems, J. Eng. Phys. Thermophys., 88, No. 1, 224–229 (2015).

    Article  Google Scholar 

  5. X. Zhang, Z. Zhang, G. Su, F. Tang, A. Liu, and H. Tao, Experimental study on thermal hazard and facade flame characterization induced by incontrollable combustion of indoor energy usage, Energy, 207, Article ID 118173 (2020).

  6. R. Qin, A. Zhou, C. L. Chow, and D. Lau, Structural performance and charring of loaded wood under fire, Eng. Struct., 228, Article ID 111491 (2021).

  7. J. Schmid, D. Brandon, N. Werther, and M. Klippe, Technical note –– Thermal exposure of wood in standard fire resistance tests, Fire Safety J., 107, 179–185 (2019).

    Article  Google Scholar 

  8. Z. Zhou, Y. Wei, H. Li, R. Yuen, and W. Jian, Experimental analysis of low air pressure influences on fire plumes, Int. J. Heat Mass Transf., 70, 578–585 (2014).

    Article  Google Scholar 

  9. S. V. Puzach and E. S. Abakumov, Modified zonal model for calculating the thermodynamics of the gas in a fire within an atrium, J. Eng. Phys. Thermophys., 80, No. 2, 298–303 (2007).

    Article  Google Scholar 

  10. R. M. Tatsii and O. Y. Pazen, Direct (classical) method of calculation of the temperature field in a hollow multilayer cylinder, J. Eng. Phys. Thermophys., 91, No. 6, 1373–1384 (2018).

    Article  Google Scholar 

  11. Y. Z. Li and H. Ingason, Influence of fire suppression on combustion products in tunnel fires, Fire Safety J., 97, 96–110 (2018).

    Article  Google Scholar 

  12. F. Tamanini, A study of the extinguishment of vertical wood slabs in self-sustained burning by water spray application, Combust. Sci. Technol., 14, Issues 1–3, 1–15 (1976); doi: https://doi.org/10.1080/00102207608946741.

    Article  Google Scholar 

  13. M. Noaki, M. A. Delichatsios, J. Yamaguchi, and Y. Ohmiya, Heat release rate of wooden cribs with water application for fire suppression, Fire Safety J., 95, 170–179 (2018).

    Article  Google Scholar 

  14. T. O. Suoware, S. O. Edelugo, and I. C. Ezema, Impact of hybrid flame retardant on the flammability and thermomechanical properties of wood sawdust polymer composite panel, Fire Mater., 43, No. 4, 335–343 (2019).

    Article  Google Scholar 

  15. A. Janès, A. Vignes, and O. Dufaud, Ignition temperatures of dust layers and bulk storages in hot environments, J. Loss Prevent. Process Indust., 59, 106–117 (2019).

    Article  Google Scholar 

  16. W. D. Woolley and M. M. Raftery, Smoke and toxicity hazards of plastics in fires, J. Hazard. Mater., 1, No. 3, 215–222 (1975).

    Article  Google Scholar 

  17. L. A. Lowden and T. R. Hull, Flammability behaviour of wood and a review of the methods for its reduction, Fire Sci. Rev., 2, No. 1, 1–19 (2013).

    Article  Google Scholar 

  18. F. Pancawardani, D. Arini, R. P. Yunindar, M. L. Ramadhan, F. A. Imran, and Y. S. Nugroho, Analysis of water mist fire suppression systema applied on cellulose fire, Proced. Eng., 170, 344–351 (2017).

    Article  Google Scholar 

  19. V. V. Dorokhov, G. V. Kuznetsov, G. S. Nyashina, and P. A. Strizhak, Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals, Environ. Pollut., 285, Article ID 117390 (2021).

  20. K. Horová, T. Jána, and F. Wald, Temperature heterogeneity during travelling fire on experimental building, Adv. Eng. Software, 62–63, 119–130 (2013).

    Article  Google Scholar 

  21. E. Garcia-Castillo, I. Paya-Zaforteza, and A. Hospitaler, Analysis of the fire resistance of timber jack arch flooring systems used in historical buildings, Eng. Struct., 243, Article ID 112679 (2021).

  22. I. Džolev, M. Laban, and S. Draganić, Survey based fi re load assessment and impact analysis of fi re load increment on fi re development in contemporary dwellings, Safety Sci., 135, Article ID 105094 (2021).

  23. T. Gernay and N. E. Khorasani, Recommendations for performance-based fi re design of composite steel buildings using computational analysis. J. Construct. Steel Res., 166, Aeticle ID 105906 (2020).

  24. I. S. Voitkov, R. S. Volkov, and P. A. Strizhak, Temperature of gases in a trace of water droplets, Therm. Sci., 22, No. 1A, 335–346 (2018); doi: https://doi.org/10.2298/TSCI160302020V.

    Article  Google Scholar 

  25. A. O. Zhdanova, R. S. Volkov, I. S. Voytkov, K. Y. Osipov, and G. V. Kuznetsov, Suppression of forest fuel thermolysis by water mist, Int. J. Heat Mass Transf., 126, 703–714 (2018).

    Article  Google Scholar 

  26. I. S. Voitkov, G. V. Kuznetsov, and P. A. Strizhak, Studying gas temperature variation upon aerosol injection, Tech. Phys. Lett., 43, No. 3, 301–304 (2017).

    Article  Google Scholar 

  27. I. S. Voytkov, M. V. Zabelin, O. V. Vysokomornaya, and P. A. Strizhak, Deceleration and reversal in the direction of motion of water droplets in a counterflow of combustion products of flammable liquids, Chem. Petrol. Eng., 53, No. 3, 248–254 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kuznetsov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 1, pp. 145–151, January–February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanova, A.O., Kopylov, N.P., Kropotova, S.S. et al. Characteristics of a Typical Indoor Seat of Fire. J Eng Phys Thermophy 96, 143–149 (2023). https://doi.org/10.1007/s10891-023-02670-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02670-8

Keywords

Navigation