Skip to main content
Log in

Kinetic Laws Governing Thermal Decomposition of Perchlorate Nickel Organometallic Complexes Under Changes of the Ligand Nature

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

As a result of the interaction of nickel perchlorate with ethylenediamine, imidazole, and semicarbazide, complex compounds Ni(En)3(ClO4)2, Ni(Im)6(ClO4)2, and Ni(SC)3(ClO4)2 have been obtained, the structure and composition of which were confirmed by elemental analysis and by the method of the infrared spectroscopy of frustrated total internal reflection. The kinetics of the thermal decomposition of synthesized compounds in an inert medium was studied within the framework of the traditional method of thermal analysis in a helium atmosphere at a rate of the heating of samples of 5°C/min and under conditions of their high-speed heating (>100°C/min) with simultaneous determination of the composition of gaseous products of thermal decomposition of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. de Mello Donegá (Ed.), Nanoparticles: Workhorses of Nanoscience, Springer-Verlag, Berlin (2014).

  2. P. Buffat and J.-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A, 13, No. 6, 2287–2298 (1976).

    Article  Google Scholar 

  3. Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals, J. Phys. Chem. B, 102, No. 32, 6145–6151 (1998).

    Article  Google Scholar 

  4. S. G. Vadchenko, M. L. Busurina, E. V. Suvorova, N. I. Mukhina, I. D. Kovalev, and A. E. Sychev, Self-propagating high-temperature synthesis of mechanically activated mixtures in Co–Ti–Al system, Fiz. Goren. Vzryva, 57, No. 1, 58–64 (2021).

    Google Scholar 

  5. O. V. Lapshin and V. G. Prokofev, Mathematical simulation of volumetric and wave gasless combustion in a hybrid mixture of activated and nonactivated powders, Fiz. Goren. Vzryva, 57, No. 4, 80–92 (2021).

    Google Scholar 

  6. U. A. Chumakov and A. G. Knyazeva, Simulation of the synthesis of matrix-inclusions composite materials, Fiz. Goren. Vzryva, 57, No. 1, 93–105 (2021).

    Google Scholar 

  7. Y. R. Parauha, V. Sahu, and S. J. Dhoble, Prospective of combustion method for preparation of nanomaterials: A challenge, Mater. Sci. Eng. B, 267, Article ID 115054 (2021).

  8. W. Zhu, F. Zhao, J. Yao, X. Zhang, H. Wang, C. Xia, and C.-Z. Li, Humic acids as a complexible fuel for combustion synthesis of ceramic nanoparticles, J. Am. Ceram. Soc., 90, No. 12, 4012–4014 (2007).

    Google Scholar 

  9. M. Salehi, M. Galini, M. Kubicki, and A. Khaleghian, Synthesis and characterization of new cobalt (III) and nickel (II) complexes derived from acetylacetone and 2-aminopyridine: A new precursor for preparation of NiO nanoparticles, Russ. J. Inorg. Chem., 64, No. 1, 18–27 (2019).

    Article  Google Scholar 

  10. B. C. Tappan, M. H. Huynh, M. A. Hiskey, D. E. Chavez, E. P. Luther, J. T. Mang, and S. F. Son, Ultralow-density nanostructured metal foams: Combustion synthesis, morphology, and composition, J. Am. Chem. Soc., 128, No. 20, 6589–6594 (2006).

    Article  Google Scholar 

  11. V. V. Boldyrev, R. K. Tukhtaev, A. I. Gavrilov, S. V. Larionov, Z. A. Savel'eva, and L. G. Lavrenova, Combustion of nickel and copper nitrate complexes of hydrazine derivatives as a method for manufacturing fine-grained and porous metals, Russ. J. Inorg. Chem., 43, No. 3, 302–305 (1998).

    Google Scholar 

  12. S. I. Pechenyuk, D. P. Domonov, and A. N. Gosteva, Thermal decomposition of cationic, anionic, and binary complex compounds of 3d metals, Ros. Khim. Zh., LXIV, No. 1, 45–69 (2020).

  13. P. Afanasiev, S. Chouzier, T. Czeri, G. Pilet, C. Pichon, M. Roy, and M. Vrinat, Cobalt hexamethylentetramine complexes (NO3)2Me(H2O)6(HMTA)2∙4H2O (Me = Co2+, Ni2+): New molecular precursors for the preparation of metal, J. Inorg. Chem., 47, No. 7, 2303–2311 (2008).

    Article  Google Scholar 

  14. B. N. Sivasankar and L. Ragunath, Thermal degradation kinetics of Co(II), Ni(II), and Zn(II) hydrazinesulfinates in air, oxygen and nitrogen atmospheres, Thermochimica Acta., 397, 237–247 (2003).

    Article  Google Scholar 

  15. A. I. Gavrilov, R. K. Tukhtaev, S. V. Larionov, L. G. Lavreneva, Z. A. Savel'eva, and V. V. Boldyrev, Production of finely divided nickel with the controlled morphology in combustion, Dokl. Fiz. Khim., 348, No. 2, 104–107 (1996).

    Google Scholar 

  16. G. S. Smith, Co-ordination compounds of semicarbaxide, phenylsernicarbaxide, m-tolybemimrbazide, and aminoguartidine, J. Chem. Soc., 1354–1358 (1937).

  17. O. P. Korobeinichev, A. S. Shmelev, V. G. Voronov, and G. I. Anisiforov, Application of dynamic mass spectrometry and computers for kinetic study. Construction of a kinetic model and determination of kinetic constants in thermal decomposition reactions. Therm. Analysis, 1, 77–83 (1975).

    Google Scholar 

  18. O. P. Korobeinichev, L. V. Kuibida, A. A. Paletsky, and A. G. Shmakov, Molecular-beam mass-spectrometry to ammonium dinitramide combustion chemistry studies, J. Propuls. Power, 14, No. 6, 991–1000 (1998).

    Article  Google Scholar 

  19. O. P. Korobeinichev, S. A. Trubachev, A. K. Joshi, A. Kumar, A. A. Paletsky, A. G. Tereshchenko, A. G. Shmakov, R. K. Glaznev, V. Raghavan, and A. M. Mebel, Experimental and numerical studies of downward flame spread over PMMA with and without addition of tri phenyl phosphate, in: Proc. Combust. Inst., 38, 4867–4875 (2021).

  20. NIST Standard Reference Database Number 69; https://doi.org/10.18434/T4D303https://webbook.nist.gov/chemistry.

  21. J. B. Hodgson, G. C. Percy, and D. A. Thornton, The infrared spectra of imidazole complexes of first transition series metal(ii) nitrates and perchlorates, J. Mol. Struct., 66, 81–92 (1980).

    Article  Google Scholar 

  22. W. J. Eilbeck, F. Holmes, and A. E. Underhill, Cobalt(II), nickel(II), and copper(II) complexes of imidazole and thiazole, J. Chem. Soc. A, 757–761 (1967).

  23. R. Ramasamy, Vibrational spectroscopic studies of imidazole, Armen. J. Phys., 8, No. 1, 51–55 (2015).

    Google Scholar 

  24. B. Morzyk-Ociepa, E. R6życka-Sokołowska, and D. Michalska, Revised crystal and molecular structure, FT-IR spectra and DFT studies of chlorotetrakis(imidazole)copper(II) chloride, J. Mol. Struct., 1028, 49–56 (2012).

  25. K. Krishnan and R. A. Plane, Raman and infrared spectra of complexes of ethylenediamine with zinc(II), cadmium(II), and mercury(II), Inorg. Chem., 5, No. 5, 852–857 (1966).

  26. G. W. Watt, J. T. Summers, E. M. Potrafke, and E. R. Birnbaum, Deprotonation of tris (ethylenediamine)osmium halides, Inorg. Chem., 5, No. 5, 857–860 (1966).

  27. M. A. Sarukhanov, S. A. Slivko, and Z. K. Kamalov, Electronic structure and vibrational spectrum of semicarbazide, J. Struct. Chem., 33, 651–656 (1992).

    Article  Google Scholar 

  28. S. V. Kasmir Raja, G. A. Savariraj, and D. N. Sathyanarayana, Vibrational spectra and normal coordinates for semicarbazide and semicarbazide hydrochloride, Ind. J. Chem., 18 A, 297–301 (1979).

    Google Scholar 

  29. S. K. Amini, N. L. Hadipour, and F. Elmi, A study of hydrogen bond of imidazole and its 4-nitro derivative by ab initio and DFT calculated NQR parameters, Chem. Phys. Lett., 391, Nos. 1–3, 95–100 (2004).

  30. B.-D. Wu, S.-W. Wang, L. Yang, T.-L. Zhang, J.-G. Zhang, and Z.-N. Zhou, Preparation, crystal structure, and thermal decomposition of two novel energetic compounds [Ni(IMI)6](L)2 (\( \textrm{L}={\textrm{ClO}}_4^{-} \) and \( {\textrm{NO}}_3^{-} \)) and one carbonate compound [Ni(IMI)6](CO3)∙5H2O (IMI=imidazole), Z. Anorg. Allg. Chem., 637, Nos. 14–15, 2252–2259 (2011).

  31. L. N. Swink and M. Atoji, The crystal structure of triethylenediamine-nickel(II)nitrate, Ni(NH2CH2CH2NH2)3(NO3)2, Acta Cryst., 13, 639–643 (1960).

    Article  Google Scholar 

  32. G. Brewer, R. J. Butcher, and J. P. Jasinski, Tris(ethane-1,2-diamine-[kappa]2N,N′)nickel (II) diiodide, Acta Cryst., 66, 103–104 (2010).

  33. J. Y. Guo, G. X. Ma, T. L. Zhang, J.-G. Zhang, and Y.-H. Liu, Study on two coordination compounds using semicarbazide (SCZ) as bidentate ligand: [Ni(SCZ)3](NO3)2 and Cu(SCZ)2Cl2, Trans. Met. Chem., 32, 413–418 (2007).

    Article  Google Scholar 

  34. M. C. N. Ranninger, M. G. Andrade, and M. A. A. Franco, Thermal decomposition of some imidazole and N-methyl substituted imidazole complexes of palladium (II), J. Therm. Anal., 14, 281–290 (1978).

    Article  Google Scholar 

  35. T. D. George and W. W. Wendlandt, The thermal decomposition of metal complexes. II Some ammine and ethylenediamine complexes of nickel (II), J. Inorg. Nucl. Chem., 25, No. 4, 395–405 (1963).

    Article  Google Scholar 

  36. I. E. House and F. M. Tahir, Deamination of tris(ethylenediamine)nickel(II) chloride and tris(ethylenediamine) platinum(IV) chloride, Thermochimica Acta., 118, 191–197 (1987).

    Article  Google Scholar 

  37. G. Singh, S. P. Felix, and D. K. Pandey, Studies on energetic compounds part 37: Kinetics of thermal decomposition of perchlorate complexes of some transition metals with ethylenediamine, Thermochim. Acta., 411, No. 1, 61–71 (2004).

    Article  Google Scholar 

  38. H. H. Horowitz and G. Metzger, A new analysis of thermogravimetric traces, Anal. Chem., 35, No. 10, 1464–1468 (1963).

    Article  Google Scholar 

  39. A. Coats and J. Redfern, Kinetic parameters from thermogravimetric data, Nature, 201, 68–69 (1964).

    Article  Google Scholar 

  40. E. S. Freeman and B. Carroll, The application of thermoanalytical techniques to reaction kinetics: The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, J. Phys. Chem., 62, No. 4, 394–397 (1958).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Shmakov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 7, pp. 1780–1793, November–December 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmakov, A.G., Paletskii, A.A., Komova, O.V. et al. Kinetic Laws Governing Thermal Decomposition of Perchlorate Nickel Organometallic Complexes Under Changes of the Ligand Nature. J Eng Phys Thermophy 95, 1732–1745 (2022). https://doi.org/10.1007/s10891-022-02644-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02644-2

Keywords

Navigation