Skip to main content
Log in

Modified Carbon Sorbents Based on Walnut Shell for Sorption of Toxic Gases

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The results of synthesis on the basis of nanocarbon for protection against a broad range of toxic chemical substances are presented. The analysis of the specimens’ structure shows that activation contributes to the formation of a great number of small pores and the development of a porous texture of sorbents, which leads to an increase in the specific surface. Activated specimens have a micromesoporosity confirmed by appropriate isotherms of low-temperature adsorption of nitrogen. It is shown that the procedure of activation results in specimens with various acidity, and this surface property has a marked effect on the characteristics of materials. The results of investigation of the breakthrough time for vapors of inorganic and organic substances show that Cu and Co ion impregnations are the most suitable for the production of a universal sorbent. Due to this, this paper presents the technology of obtaining activated charcoals impregnated with ions of various metals that can surpass sorption properties of commercial reference materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Buekens, N. N. Zyaykina, B. Nath, and G. S. Cholakov, Pollution Control Technologies, Vol. II. Encyclopedia for Life Support Systems, UNESCO-EOLSS eBook (2009).

  2. S. H. Madani, F. Rodrigues-Reinoso, M. J. Biggs, and P. Pendleton, Isosteric heats of adsorption of gases and vapors on a microporous carbonaceous material, J. Chem. Eng. Data, 63, No. 8, 3107–3116 (2018).

    Article  Google Scholar 

  3. D. A. Giannakoudakisa, M. Barczakb, M. Florenta, and T. J. Bandosz, Analysis of interactions of mustard gas surrogate vapors with porous carbon textiles, Chem. Eng. J., 362, 758–766 (2019).

    Article  Google Scholar 

  4. A. J. Fletcher, Y. Uygur, and K. M. Thomas, Role of surface functional groups in the adsorption kinetics of water vapor on microporous carbons, J. Phys. Chem. C, 111, 8349–8359 (2007).

    Article  Google Scholar 

  5. S. W. Rutherford and J. Coonset, Equilibrium and kinetics of water adsorption in active carbon molecular sieve: Theory and experiment, Langmuir, 20, 8681–8687 (2004).

    Article  Google Scholar 

  6. P. Lodewyckx, L. Fernandez-Velasco, and Y. Boutillara, Estimating the service life of activated carbon filters for air purification, Eurasian Chem. Tech. J., 21, No. 3, 193–201 (2019).

    Article  Google Scholar 

  7. Z. A. Mansurov, P. Lodewyckx, L. F. Velasco, S. Azat, and A. R. Kerimkulova, Modified sorbents based on walnut shell for sorption of toxic gases, Mat. Today: Proceed. (2021); https://doi.org/10.1016/j.matpr.2020.12.948.

  8. S. Sochard, N. Fernandes, and J.-M. Reneaume, Modeling of adsorption isotherm of a binary mixture with real adsorbed solution theory and nonrandom two-liquid model, AIChE J., 56, No. 12, 3109–3119 (2010).

    Article  Google Scholar 

  9. T. Mochizuki, M. Kubota, H. Matsuda, and L. F. D’Elia Camacho, Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation, Fuel Process. Technol., 144, 164–169 (2016).

    Article  Google Scholar 

  10. A. Heidari, H. Younesi, A. Rashidi, and A. A. Ghoreyshi, Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment, Chem. Eng. J., 254, 503–513 (2014).

    Article  Google Scholar 

  11. S. Azat, Rosa Busquets, V. V. Pavlenko, A. R. Kerimkulova, Raymond L. D. Whitby, and Zulkhair A. Mansurov, Applications of activated carbon sorbents based on greek walnut, Appl. Mech. Mat., 467, 49–51 (2014).

  12. K. Askaruly, S. Azat, Z. Sartova, M. Yeleuov, A. Kerimkulova, and K. Bekseitova, Obtaining and characterization of amorphous silicon from rice husk, J. Chem. Technol. Metall., 55, No. 1, 88–97 (2020).

    Google Scholar 

  13. V. O. Njoku, Islam M. D. Azharul, M. Asif, and B. H. Hameed, Adsorption of 2,4dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch, J. Environ. Manage., 154, 138–144 (2015).

    Article  Google Scholar 

  14. Z. A. Mansurov, J. M. Jandosov, A. R. Kerimkulova, S. Azat, A. A. Zhubanova, I. E. Digel, and A. S. Kistaubaeva, Nanostructured carbon materials for biomedical use, Eurasian Chem. Tech. J., 15, No. 3, 209–217 (2013).

    Article  Google Scholar 

  15. W. Zhang, H. Liu, Q. Xia, and Z. Li, Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma, Chem. Eng. J., 209, 597–600 (2012).

    Article  Google Scholar 

  16. Y. Boutillara et al., In-situ copper impregnation by chemical activation with CuCl2 and its application to SO2 and H2S capture by activated carbons, Chem. Eng. J., 372, 631–637 (2019).

    Article  Google Scholar 

  17. C. Yang, Y. Wang, H. Fan, G. de Falco, S. Yang, J. Shangguan, and T. J. Bandosz, Bifunctional ZnO–MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation, Appl. Catal. B Environ., 266, Article ID 118674 (2020).

  18. A. R. Kerimkulova, S. Azat, L. Velasco, Z. A. Mansurov, P. Lodewyckx, M. I. Tulepov, M. R. Kerimkulova, I. Berezovskaya, and A. Imangazy, Granular rice husk-based sorbents for sorption of vapors of organic and inorganic matters, J. Chem. Technol. Metall., 54, No. 3, 578–584 (2019).

  19. U. M. Kalsoom, Sh. Rafi que, Sh. Shahzadi, Kh. Fatima, and R. Shaheen, Bi-tri- and few-layer graphene growth by PLD technique using Ni as catalyst, Mater. Sci.-Poland, 35, 687–693 (2017).

  20. L. A. Jonas, Y. B. Tewari, and E. B. Sansone, Prediction of adsorption rate constants of activated carbon for various vapors, Carbon, 17, 345–349 (1979).

    Article  Google Scholar 

  21. M. M. Dubinin, E. D. Zaverina, and L. V. Radushkevich, Sorption and structure of active carbons I. Adsorption of organic vapors, Zh. Fiz. Khim., 21, 1351–1362 (1947).

  22. H. Muramatsu, Y. A. Kim, K.-S. Yang, R. Cruz-Silva, I. Toda, T. Yamada, M. Terrones, M. Endo, T. Hayashi, and H. Saitoh, Rice husk-derived graphene with nano-sized domains and clean edges, Nanomicro Small, 14, No. 10, 2766–2770 (2014).

    Article  Google Scholar 

  23. Z. A. Mansurov, M. K. Atamanov, Zh. Elemesova, B. T. Lesbaev, and M. N. Chikradze, New nanocarbon high-energy materials, Combust. Explos. Shock Waves, 55, No. 4, 34–41 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Mansurov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 6, pp. 1408–1418, November–December, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansurov, Z.A., Velasco, L.F., Lodewyckx, P. et al. Modified Carbon Sorbents Based on Walnut Shell for Sorption of Toxic Gases. J Eng Phys Thermophy 95, 1383–1392 (2022). https://doi.org/10.1007/s10891-022-02607-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02607-7

Keywords

Navigation