Skip to main content
Log in

Influence of Porous Structure Heterogeneity on the Dynamics of Development of Interfacial Contacts in Two-Phase Flows with Viscous and Capillary Fingers

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An investigation of the effect of capillary and viscous forces on the dynamics of the development of two types of interfacial contacts "injected fluid–ejected fluid" and "injected fluid–solid body" in the case of two-phase flows in porous media with different heterogeneities of the pore structure is carried out. The connection between the dynamics of development of interfaces, distribution of fluids in the pore space of samples and the average size of pore channels filled with the injected fluid is being established. To simulate a two-phase flow the present work resorts to the lattice Boltzmann equations together with the multirelaxation time collision operator, as well as the color field gradient model for describing the effects of interfacial interaction. The relationship between the capillary and viscous forces is controlled by flow velocity and interfacial tension. Computational experiments are carried out on artificial digital models of porous media with the use of the Monte Carlo algorithm. The heterogeneity of porous structures is described numerically with the aid of the randomness coefficient calculated as the standard deviation of local porosity measured in Voronoi′s cells. A linear law of the development of the specific length of interfacial "fluid–fluid" and "fluid–solid body" contacts has been established. The two-phase flow parameters and the heterogeneity of the pore structure exert their effect only on the dynamics of the growth of the interface length. An increase in the heterogeneity of the pore structure contributes to the growth of the mean size of pore channels filled with injected fluid. The randomness coefficient exerts an insignificant effect on the dynamics of the development of the "fluid–fluid" contact and a negative effect on the dynamics of the development of the "fluid–solid body" interface. In transition from flow with viscous fingers to a regime with capillary fingers, a significant decrease in the dynamics of development of the "fluid–fluid" contact and an increase in the dynamics of the development of the "fluid–solid body" interface are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narváez, B. D. Jones, J. R. Williams, A. J. Valocchi, and J. Harting, Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci., 20, No. 4, 777–805 (2016).

    Article  MathSciNet  Google Scholar 

  2. T. R. Zakirov, A. A. Galeev, and M. G. Khramchenkov, Pore-scale investigation of two-phase flows in three-dimensional digital models of natural sandstones, Fluid Dyn., 53, No. 5, 76–91 (2018).

    Article  Google Scholar 

  3. S. Bakhshian, S. A. Hosseini, and N. Shokri, Pore-scale characteristics of multiphase flow in heterogeneous porous media using the lattice Boltzmann method, Sci. Rep., 9, No. 1, Article No. 3377 (2019).

    Article  Google Scholar 

  4. T. Tsuji, F. Jiang, and K. T. Christensen, Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone, Adv. Water Resour., 95, 3–15 (2016).

    Article  Google Scholar 

  5. A. P. Lukisha, Determination of the hydraulic parameters of two-phase vapor–liquid flow in porous high-thermalconductivity materials, J. Eng. Phys. Thermophys., 87, No. 2, 427−442 (2014).

    Article  Google Scholar 

  6. O. Borgman, T. Darwent, E. Segre, L. Goehring, and R. Holtzman, Immiscible fluid displacement in porous media with spatially correlated particle sizes, Adv. Water Resour., 128, 158–167 (2019).

    Article  Google Scholar 

  7. R. Holtzman, Effects of pore-scale disorder on fluid displacement in partially-wettable porous media, Sci. Rep., 6, Article No. 36221 (2016).

    Article  Google Scholar 

  8. R. Holtzman and R. Juanes, Crossover from fingering to fracturing in deformable disordered media, Phys. Rev. E, 82, Article No. 046305 (2010).

    Article  Google Scholar 

  9. H. Liu, Y. Zhang, and A. J. Valocchi, Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network, Phys. Fluids, 27, Article No. 052103 (2015).

    Article  Google Scholar 

  10. C. Zhang, M. Oostrom, T. W. Wietsma, J. W. Grate, and M. G. Warner, Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering, Energy Fuels, 25, , 3493–3505 (2011).

  11. A. Ferrari, J. Jimenez-Martinez, T. Le Borgne, Y. Meheust, and I. Lunati, Challenges in modeling unstable two-phase flow experiments in porous micromodels, Water Resour. Res., 51, No. 3, 1381–1400 (2015).

    Article  Google Scholar 

  12. H. Liu, A. J. Valocchi, C. Werth, Q. Kang, and M. Oostrom, Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model, Adv. Water Resour., 73, 144–158 (2014).

    Article  Google Scholar 

  13. C. Zhang, M. Oostrom, J. W. Grate, T. W. Wietsma, and M. G. Warner, Liquid CO2 displacement of water in a dualpermeability pore network micromodel, Environ. Sci. Technol., 45, 7581–7588 (2011).

    Article  Google Scholar 

  14. D. A. Konovalov, Experimental investigations of heat and mass transfer in microchannel heat-transfer elements, J. Eng. Phys. Thermophys., 89, No. 3, 636−641 (2016).

    Article  Google Scholar 

  15. C. Zhang, K. Dehoff, N. Hess, M. Oostrom, T. W. Wietsm, A. J. Valocchi, B. W. Fouke, and C. J. Werth, Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system, Environ. Sci. Technol., 44, 7833–7838 (2010).

    Article  Google Scholar 

  16. M. L. Porter, M. G. Schaap, and D. Wildenschild, Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media, Adv. Water Resour., 32, 1632–1640 (2009).

    Article  Google Scholar 

  17. K. A. Culligan, D. Wildenschild, B. S. B. Christensen, W. G. Gray, and M. L. Rivers, Pore-scale characteristics of multiphase flow in porous media: A comparison of air–water and oil–water experiments, Adv. Water Resour., 29, No. 2, 227–238 (2006).

    Article  Google Scholar 

  18. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford (2001).

    MATH  Google Scholar 

  19. E. Aslan, I. Taymaz, and A. C. Benim, Investigation of the lattice Boltzmann SRT and MRT stability for lid driven cavity flow, Int. J. Mater., Mech. Manuf., 2, No. 4, 317−324 (2014).

    Google Scholar 

  20. D. H. Rothman and J. M. Keller, Immiscible cellular-automaton fluids, J. Stat. Phys., 52, Nos. 3–4, 1119–1127 (1998).

  21. M. Latva-Kokko and D. Rothman, Scaling of dynamic contact angles in a lattice Boltzmann model, Phys. Rev. Lett., 98, Article No. 254503 (2007).

    Article  Google Scholar 

  22. T. Reis and T. N. Phillips, Lattice Boltzmann model for simulating immiscible two-phase flows, J. Phys. A: Math. Theor., 40, 4033–4053 (2007).

    Article  MathSciNet  Google Scholar 

  23. C. Pan, L. S. Luo, and C. T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids, 35, 898–909 (2006).

    Article  Google Scholar 

  24. T. R. Zakirov and M. G. Khramchenkov, Simulation of two-phase fluid flow in the digital model of a pore space of sandstone at different surface tensions, J. Eng. Phys. Thermophys., 93, No. 3, 733–742 (2020).

    Article  Google Scholar 

  25. Z. Xu, H. Liu, and A. J. Valocchi, Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media, Water Resour. Res., 53, No. 5, 3770–3790 (2017).

    Article  Google Scholar 

  26. A. A. Avramenko, Yu. Yu. Kovetska, I. V. Shevchuk, A. I. Tyrinov, and V. I. Shevchuk, Heat transfer in porous microchannels with second-order slipping boundary conditions, Transp. Porous Media, 129, No. 3, 673–699 (2019).

    Article  MathSciNet  Google Scholar 

  27. A. A. Avramenko, Yu. Yu. Kovetska, I. V. Shevchuk, A. I. Tyrinov, and V. I. Shevchuk, Mixed convection in vertical flat and circular porous microchannels, Transp. Porous Media, 124, Issue 3, 919–941 (2018).

    Article  MathSciNet  Google Scholar 

  28. Q. Zou and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591−1598 (1997).

    Article  MathSciNet  Google Scholar 

  29. A. I. Tyrinov, A. A. Avramenko, B. I. Basok, and B. V. Davydenko, Modeling of flows in a microchannel based on the Boltzmann lattice equation, J. Eng. Phys. Thermophys., 85, No. 1, 65−72 (2012).

    Article  Google Scholar 

  30. T. R. Zakirov and M. G. Khramchenkov, Characterization of two-phase displacement mechanisms in porous media by capillary and viscous forces estimation using the lattice Boltzmann simulations, J. Pet. Sci. Eng., 184, Article No. 106575 (2019).

    Article  Google Scholar 

  31. H. Laubie, S. Monfared, F. Radjaï, R. Pellenq, and F.-J. Ulm, Disorder-induced stiffness degradation of highly disordered porous materials, J. Mech. Phys. Solids, 106, 207–228 (2017).

    Article  MathSciNet  Google Scholar 

  32. Z. Wang, K. Chauhan, J.-M. Pereira, and Y. Gan, Disorder characterization of porous media and its effect on fluid displacement, Phys. Rev. Fluids, 4, Article No. 034305 (2019).

    Article  Google Scholar 

  33. I. Lunati, Young′s law and the effects of interfacial energy on the pressure at the solid–fluid interface, Phys. Fluids, 19, Article No. 118105 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Zakirov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 6, pp. 1560–1575, November–December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakirov, T.R., Khramchenkov, M.G. Influence of Porous Structure Heterogeneity on the Dynamics of Development of Interfacial Contacts in Two-Phase Flows with Viscous and Capillary Fingers. J Eng Phys Thermophy 94, 1526–1541 (2021). https://doi.org/10.1007/s10891-021-02433-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02433-3

Keywords

Navigation