Skip to main content
Log in

Enhancement of Heat Transfer during Turbulent Flow in Plane and Circular Nonseparating Diffusers

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Consideration is given to the possibility of enhancing heat transfer in circular and plane nonseparating diffusers with small opening angles. Numerical modeling of the heat transfer was performed with the three-parameter differential turbulence model supplemented with the transfer equation for the turbulent heat flux. It has been show that at the same opening angle, the Nusselt number in the circular diffuser is much higher than that in the plane diffuser, with this excess growing with opening angle. However, the Reynolds analogy factor for the circular diffuser is only slightly higher than that for the plane one. A study has been made of the influence of the Reynolds number, the diffuser length, and the Prandtl number of the heat-transfer agent. It has been shown that the minimum effect of heat-transfer enhancement is attained for gases with a small Prandtl number and depends weakly on the Reynolds number and the diffuser length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Migai, Raising the Efficiency of Modern Heat Exchangers [in Russian], Énergiya, Moscow (1980).

    Google Scholar 

  2. É. K. Kalinin, G. A. Dreitser, I. Z. Kopp, and A. S. Myakochin, Efficient Surfaces of Heat Exhangers [in Russian], Énergoatomizdat, Moscow (1998).

    Google Scholar 

  3. B. V. Dzyubenko, Yu. A. Kuzma-Kichta, A. I. Leontiev, et al., Intensification of Heat and Mass Transfer on Macro-, Micro-, and Nanoscales [in Russian], FGUP "Tsniiatominform," Moscow (2008).

  4. A. E. Bergles, Recent developments in enhanced heat transfer, Int. J. Heat Mass Transf., 47, No. 8, 1001–1008 (2011).

    Article  Google Scholar 

  5. A. I. Leontiev, N. A. Kiselev, S. A. Burtsev, M. M. Strongin, and Yu. A. Vinogradov, Experimental investigation of heat transfer and drag on surfaces with spherical dimples, Exp. Therm. Fluid Sci., 79, 74–84 (2016).

    Article  Google Scholar 

  6. A. A. Gukhman, V. A. Kirpikov, V. V. Gutarev, and N. M. Tsirel'man, Investigation of heat transfer and hydrodynamic drag in the turbulent fl ow of a gas in the fi eld of a longitudinal pressure gradient of variable sign. I, J. Eng. Phys., 16, No. 4, 387−395 (1969).

  7. A. A. Gukhman, V. A. Kirpikov, V. V. Gutarev, and N. M. Tsirel'man, Investigation of the transfer of heat and of hydrodynamic resistance in the turbulent flow of a gas in the field of a longitudinal pressure gradient of variable sign. II, J. Eng. Phys., 16, No. 6, 669−672 (1969).

  8. E. S. Abbasov and M. A. Umurzakova, Thermal effi ciency of solar air heaters with diffuser–confuser solar collectors, Geliotekhnika, No. 1, 37−43 (2007).

    Google Scholar 

  9. S. N. Kharlamov and R. A. Alginov, Hydrodynamics and heat transfer in complex pipelines at any confi guration of wall, Proc. 2012 7th Int. Forum on Strategic Technology, IFOST 2012, 18−21 September 2012, Tomsk (2012), Article No. 6357683.

  10. A. I. Reshmin, S. Kh. Teplovodskii, and V. V. Trifonov, Turbulent fl ow in a circular nonseparating diffuser at Reynolds numbers smaller than 2000, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 121–130 (2011).

  11. V. G. Lushchik, A. A. Pavel′ev, and A. E. Yakubenko, Three-parameter shear-turbulence model, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 13–25 (1978).

  12. S. A. Isaev, P. A. Baranov, S. V. Guvernyuk, and M. A. Zubin, Numerical and physical modeling of turbulent flow in a divergent channel with a vortex cell, J. Eng. Phys. Thermophys., 75, No. 2, 269−276 (2002).

    Article  Google Scholar 

  13. V. M. Zubarev, Numerical simulation of turbulent incompressible fl ow with increasing adverse pressure gradient, J. Eng. Phys. Thermophys., 92, No. 3, 631−639 (2019).

    Article  MathSciNet  Google Scholar 

  14. A. I. Leontiev, V. G. Lushchik, and M. S. Makarova, Numerical investigation into the fl ow in a pipe with the gas suction through permeable walls, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 74−81 (2014).

  15. M. S. Makarova and V. G. Lushchik, Numerical simulation of turbulent fl ow and heat transfer in tube under injection of gas through permeable walls, J. Phys.: Conf. Ser., 891, Article 012066 (2017).

  16. V. G. Lushchik, M. S. Makarova, and A. I. Reshmin, Flow laminarization during the motion with heat transfer in a plane channel with a confuser, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 68–77 (2019).

  17. G. L. Lioznov, V. G. Lushchik, M. S. Makarova, and A. E. Yakubenko, Infl uence of the turbulization of the freestream on flow and heat transfer in the boundary layer on a plate, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 40−42 (2012).

  18. A. I. Leontiev, V. G. Lushchik, and M. S. Makarova, Temperature recovery factor in the boundary layer on a permeable plate, Teplofi z. Vys. Temp., 55, No. 2, 255–261 (2017).

    Google Scholar 

  19. A. I. Leontiev, V. G. Lushchik, and M. S. Makarova, Study of effect of molecular Prandtl number, transpiration, and longitudinal pressure gradient on fl ow and heat transfer characteristics in boundary layers, Comput. Therm. Sci., 11, Nos. 1−2, 41–49 (2019).

  20. V. G. Lushchik and M. S. Makarova, Turbulent Prandtl number in the boundary layer on a plane: infl uence of the molecular Prandtl number, injection (suction), and the longitudinal pressure gradient, Teplofi z. Aéromekh., 25, No. 2, 177–190 (2018).

    Google Scholar 

  21. A. I. Leontiev, V. G. Lushchik, and A. I. Reshmin, Heat transfer in conical divergent channels, Teplofi z. Vys. Temp., 54, No. 2, 287–293 (2016).

    Google Scholar 

  22. V. G. Lushchik, A. A. Pavel′ev, and A. E. Yakubenko, Transfer equation for the turbulent heat fl ux. Calculation of heat transfer in a pipe, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 42–50 (1988).

  23. W. Nunner, Wärmeübergang und Druckabfall in rauhen Röhren, VDI Forschungsheft, N. 455, 5–39 (1956).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Lushchik.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 2, pp. 483–495, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushchik, V.G., Makarova, M.S. & Reshmin, A.I. Enhancement of Heat Transfer during Turbulent Flow in Plane and Circular Nonseparating Diffusers. J Eng Phys Thermophy 94, 467–478 (2021). https://doi.org/10.1007/s10891-021-02317-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02317-6

Keywords

Navigation