Skip to main content
Log in

Experimental Investigation of the Suppression of Crown and Ground Forest Fires

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of experimental investigations on the suppression of the flame combustion and thermal decomposition of forest combustible materials by aerosol flows of a pure water and aqueous solutions are presented. The characteristics of some sprayers were determined and the densities of wetting of a fire hotbed, provided by them, were calculated. The times of extinguishing hotbeds of model crown and ground forest fi res were measured, and distributions of temperatures and heat flows in them were determined. It is shown that the efficiency of extinguishing a forest fire is mainly determined by the sizes of the aerosol droplets acting on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. X. Viegas and A. Simeoni, Eruptive behaviour of forest fires, Fire Technol., 47, No. 2, 303–320 (2011).

  2. H. Wang, Analysis on downwind distribution of firebrands sourced from a wildland fire, Fire Technol., 47, No. 2, 321–340 (2011).

  3. M. E. Houssami, E. Mueller, A. Filkov, J. C. Thomas, N. Skowronski, M. R. Gallagher, K. Clark, R. Kremens, and A. Simeoni, Experimental procedures characterising firebrand generation in wildland fires, Fire Technol., 52, No. 3, 731–751 (2016).

  4. D. E. Calkin, C. S. Stonesifer, M. P. Thompson, and C. W. McHugh, Large airtanker use and outcomes in suppressing wildland fires in the United States, Int. J. Wildland Fire, 23, No. 2, 259–271 (2014).

  5. T. Konishi, H. Kikugawa, Yu. Iwata, H. Koseki, K. Sagae, A. Ito, and K. Kato, Aerial fi refi ghting against urban fire: Mock-up house experiments of fi re suppression by helicopters, Fire Safety J., 43, No. 5, 363–375 (2008).

  6. P. A. Strizhak, Influence of droplet distribution in a water slug on the temperature and concentration of combustion products in its wake, J. Eng. Phys. Thermophys., 86, No. 4, 895–904 (2013).

  7. G. V. Kuznetsov and P. A. Strizhak, Heat and mass transfer in quenching the reaction of thermal decomposition of a forest combustible material with a group of water drops, J. Eng. Phys. Thermophys., 87, No. 3, 608–617 (2014).

  8. A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Numerical investigation of physicochemical processes occurringduring water evaporation in the surface layer pores of a forest combustible material, J. Eng. Phys. Thermophys., 87,No. 4, 773–781 (2014).

  9. N. P. Kopylov, G. M. Grozdov, I. R. Khasanov, and S. V. Gorshkov, Theoretical and experimental research of parameters of the water discharged for fire extinguishment by means of an IL-76 aircraft, Proc. Second Int. Seminar on Fire-and-Explosion Hazard of Substances and Venting of Deflagrations, Moscow (1998), pp. 559–564.

  10. E. A. Moskvilin, Use of aircraft for suppression of forest fires, Pozhar. Bezopasnost′, No. 1, 89–92 (2009). 1465

  11. N. P. Kopylov, I. R. Khasanov, A. E. Kuznetsov, D. V. Fedotkin, E. A. Moskvilin, P. A. Strizhak, and V. N. Karpov, Parameters of the throw-down of water from aircraft in the extinguishing of forest fires, Pozhar. Bezopasnost′, No. 2, 49–55 (2015).

  12. J. Madrigal, M. Guijarro, C. Hernando, C. Díez, and E. Marino, Estimation of peak heat release rate of a forest fuel bed in outdoor laboratory conditions, J. Fire Sci., 29, No. 1, 53–70 (2011).

  13. K. J. Overholt, J. Cabrera, A. Kurzawski, and O. Ezekoye, Characterization of fuel properties and fire spread rates for little bluestem grass, Fire Technol., 50, No. 1, 9–38 (2014).

  14. V. Tihay-Felicelli, P. A. Santoni, T. Barboni, and L. Leonelli, Autoignition of dead shrub twigs: influence of diameter on ignition, Fire Technol., 52, No. 3, 897–929 (2016).

  15. P. Bartolia, A. Simeonia, H. Biteau, J. L. Torero, and P. A. Santoni, Determination of the main parameters influencing forest fuel combustion dynamics, Fire Safety J., 46, Nos. 1–2, 27–33 (2011).

  16. P. Bufacchia, G. C. Kriegera, and W. Mell, Numerical simulation of surface forest fire in Brazilian Amazon, Fire Safety J., 79, 44–56 (2016).

    Article  Google Scholar 

  17. J. Madrigal, C. Hernando, M. Guijarro, C. Díez, E. Marino, and A. J. De Castro, Evaluation of forest fuel flammability and combustion properties with an adapted mass loss calorimeter device, J. Fire Sci., 27, No. 4, 323–342 (2009).

  18. S. McAllister and M. Finney, Burning rates of wood cribs with implications for wildland fires, Fire Technol., 52, No. 6, 1755–1777 (2015).

  19. O. P. Korobeinichev, A. G. Shmakov, V. M. Shvartsberg, A. A. Chernov, S. A. Yakimov, K. P. Koutsenogii, and V. I. Makarov, Fire suppression by low-volatile chemically active fire suppressants using aerosol technology, Fire Safety J., 51, 102–109 (2012).

    Article  Google Scholar 

  20. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, The influence of initial sizes and velocities of water droplets on transfer characteristics at high-temperature gas flow, Int. J. Heat Mass Transf., 79, 838–845 (2014).

    Article  Google Scholar 

  21. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of mixtures and foreign inclusions in water droplets influence on integral characteristics of their evaporation during motion through high-temperature gas area, Int. J. Therm. Sci., 88, 193–200 (2015).

    Article  Google Scholar 

  22. R. S. Volkov and P. A. Strizhak, The integral characteristics of the deceleration and entrainment of water droplets by the counter flow of high-temperature combustion products, Exp. Therm. Fluid Sci., 75, 54–65 (2016).

    Article  Google Scholar 

  23. Z. Ma, H. G. Merkus, and B. Scarlett, Particle-size analysis by laser diffraction with a complementary metal-oxide semiconductor pixel array, Appl. Optics, 39, No. 25, 4547–4556 (2000).

  24. J. P. Mitchell and M. Tservistas, Laser diffractometry and cascade impaction for nebulizer product characterization, Pharmeuropa Sci. Notes, 2, 49–52 (2006).

    Google Scholar 

  25. S. Dehaeck, H. Van Parys, A. Hubin, and J. P. A. J. van Beeck, Laser marked shadowgraphy: A novel optical planar technique for the study of microbubbles and droplets, Exp. Fluids, 47, No. 2, 333–341 (2009).

  26. H. Markus, S. Pentti, S. Tuomas, and N. Jouko, Recognition of highly overlapping ellipse-like bubble images, Meas. Sci. Technol., 16, 1760–1770 (2005).

    Article  Google Scholar 

  27. Y. K. Akhmetbekov, S. V. Alekseenko, V. M. Dulin, D. M. Markovich, and K. S. Pervunin, Planar fluorescence for round bubble imaging and its application for the study of an axisymmetric two-phase jet, Exp. Fluids, 48, 615 629 (2010).

  28. R. D. Keane and R. J. Adrian, Theory of cross-correlation analysis of PIV images, Appl. Sci. Res., 49, 191–215 (1992).

    Article  Google Scholar 

  29. J. Westerweel, Fundamentals of digital particle image velocimetry, Meas. Sci. Technol., 8, 1379–1392 (1997).

    Article  Google Scholar 

  30. T. V. Chagovets and S. W. Van Sciver, A study of thermal counterflow using particle tracking velocimetry, Phys. Fluids, 23, 107102 (2011).

    Article  Google Scholar 

  31. D. Damiani, E. Meillot, and D. Tarlet, A particle-tracking-velocimetry (PTV) investigation of liquid injection in a dc plasma jet, J. Therm. Spray Technol., 23, No. 3, 340–353 (2014).

  32. R. S. Volkov, G. V. Kuznetsov, P. A. Kuibin, and P. A. Strizhak, Weber numbers at various stages of water projectile transformation during free fall in air, Tech. Phys. Lett., 41, No. 10, 1019–1022 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Volkov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 6, pp. 2497–2510, November–December, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, R.S., Kopylov, N.P., Kuznetsov, G.V. et al. Experimental Investigation of the Suppression of Crown and Ground Forest Fires. J Eng Phys Thermophy 92, 1453–1465 (2019). https://doi.org/10.1007/s10891-019-02064-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-02064-9

Keywords

Navigation