Skip to main content
Log in

Numerical Simulation of Turbulent Incompressible Flow with Increasing Adverse Pressure Gradient

  • HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Consideration is given to separation-free plane flow in a boundary layer developing on a smooth diffuser wall under the action of a pressure gradient p(x), where both quantities dp/dx and d2p/dx2 are positive (adverse pressure gradient). The adverse pressure gradient arose in a diffuser with plane walls (experiment F0141A). The results of numerical calculations of flow with a nonzero pressure gradient in the boundary layer of an incompressible liquid with the use of the near-wall k–ε model of turbulence are given. A comparison of the basic characteristics of flow with tested experimental and theoretical data is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Samuel and P. N. Joubert, The 1980–81 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment (S. J. Kline, B. J. Cantwell, and G. M. Lilley, Eds.), in: Proc. 1980 Conference Stanford Univ., Stanford, California, September 3–6, 1980, Mech. Eng. Dept. Stanford University, 1981, Tech. Rep. AFOSR-TR-83–1001, pp. 259–261.

  2. P. Bradshaw, B. E. Launder, and J. L. Lumley, Collaborative testing of turbulence models, J. Fluids Eng., 113, 3–4 (1991).

    Article  Google Scholar 

  3. Journals of Fluids Engineering Databank, Index of /ejournals/JFE/data/JFE/DB96-243/d4 http://scholar.lib.vt.edu/ejournals/JFE/data/JFE/DB96-243/d4/f0141a.

  4. H. K. Myong and N. Kasagi, A new proposal for a k−å turbulence model and its evaluation. 1st report, Development of the model, Trans. Jpn. Soc. Mech. Eng. B, 54, No. 507, 3003–3009 (1988).

    Article  Google Scholar 

  5. H. K. Myong and N. Kasagi, A new proposal for a k−å turbulence model and its evaluation. 2nd report, Evaluation of the model, Trans. Jpn. Soc. Mech. Eng. B, 54, No. 508, 3512–3520 (1988).

    Article  Google Scholar 

  6. V. A. Aleksin and V. M. Zubarev, Simulation of the effect of the free stream turbulence parameters in near-wall transition boundary-value flows, Mat. Modelir., 20, No. 8, 87–106 (2008).

    MATH  Google Scholar 

  7. V. M. Zubarev, Joint effect of free stream turbulence parameters on flow transition in a boundary layer, Tepl. Prots. Tekh., 8, No. 1, 4–15 (2016).

    Google Scholar 

  8. W. Rodi, Examples of turbulence models for incompressible flows, AIAA J., 20, 872–879 (1982).

    Article  Google Scholar 

  9. E. H. Hirschel and W. Kordulla, Shear flow in surface-oriented coordinates, in: Notes on Numerical Fluid Mechanics, Vol. 4, Friedrich Vieweg & Sohn, Braunschweig/Wiesbaden (1986).

    MATH  Google Scholar 

  10. A. J. McConnell, Application of Tensor Analysis, Dover, New York (1957).

    MATH  Google Scholar 

  11. I. S. Sokolnikoff, Tensor Analysis. Theory and Applications to Geometry and Mechanics of Continua, John Wiley, New York (1964).

    MATH  Google Scholar 

  12. W. P. Jones and B. E. Launder, The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence, Int. J. Heat Mass Transf., 16, No. 6, 1119–1130 (1973); DOI: https://doi.org/10.1016/0017-9310(73)90125-7.

    Article  Google Scholar 

  13. B. Lakshminarayana, Turbulence modeling for complex shear flows, AIAA J., 24, 1900–1917 (1986).

    Article  Google Scholar 

  14. V. C. Patel, W. Rodi, and G. Scheuerer, Turbulence models for near-wall and low Reynolds number flows: A review, AIAA J., 23, 1308-–1319 (1984); DOI: https://doi.org/10.2514/3.9086.

    Article  MathSciNet  Google Scholar 

  15. V. M. Zubarev, Comparative Analysis of Various kε Turbulence Models for Laminar-Turbulent Transition, Preprint No. 601 of A. Yu. Ishlinskii Institute of Problems of Mechanics of the Russian Academy of Sciences, IPM RAN, Moscow (1997).

  16. J. O. Hinze, Turbulence, McGraw-Hill, New York (1975).

    Google Scholar 

  17. H. Reichardt, Völlstiindige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen, Z. Angew. Math. Mech., 31, No. 7, 208–-219 (1951); DOI: https://doi.org/10.1002/zamm.19510310740.

    Article  MATH  Google Scholar 

  18. D. B. Spalding, A single formula for the "law of the wall," Trans. ASME, Ser. E, J. Appl. Mech., 28, No. 3, 455–458 (1961); DOI:10.1115/1.3641728.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Zubarev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 3, pp. 654–663, May–June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubarev, V.M. Numerical Simulation of Turbulent Incompressible Flow with Increasing Adverse Pressure Gradient. J Eng Phys Thermophy 92, 631–639 (2019). https://doi.org/10.1007/s10891-019-01972-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-01972-0

Keywords

Navigation