Skip to main content
Log in

Influence of the Rotation of a Blunt-Nose Cone on the Heat Exchange in the Supersonic Flow Over it at an Angle of Attack

  • HEAT CONDUCTION AND HEAT EXCHANGE IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Some methods of control over the thermal regimes realized in a supersonic flow past a conic body with a nose blunted over a sphere were numerically investigated with account of complicating factors. The solution of the problem on the heat and mass transfer in the boundary layer on the surface of this body in the conjugate formulation made it possible to estimate the influence of the nonisothermality of the surface of the body on the characteristics of the indicated transfer. The influence of the rotation of such a body made of composite materials on the heat exchange in the flow over it was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Bashkin and s. M. Reshet’ko, On the maximum temperature of a bluntness with account of its heat conduction, Uch. Zap. TsAGI, 20, No. 5, 53–59 (1989).

    Google Scholar 

  2. V. I. Zinchenko, A. G. Kataev, and A. S. Yakimov, Investigation of temperature regimes of aerodynamic bodies in the case of flow of a gas from their surface, Prikl. Mekh. Tekh. Fiz., No. 6, 57–64 (1992).

    Google Scholar 

  3. V. I. Zinchenko and A. S. Yakimov, Investigation of the heat-exchange characteristics in the case where a gas flows around a cone with a nose blunted over a sphere at an angle of attack and is blown from the bluntness surface, Prikl. Mekh. Tekh. Fiz., No. 4, 162–169 (1999).

    Google Scholar 

  4. A. A. Markov, Influence of the rotation of a blunt-nosed body and the external vorticity on the heat exchange at the critical point of the supersonic flow over the body, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 179–182 (1984).

    Google Scholar 

  5. N. A. Krasilov, V. A. Levin, and S. A. Yunitskii, Investigation of the hypersonic viscous shock layer on rotating bodies in the presence of flow, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 106−114 (1986).

    Google Scholar 

  6. V. I. Zinchenko, K. N. Efimov, and A. S. Yakimov, Investigation of the characteristics of conjugate heat and mass transfer in spatial flow past a sphere-blunted cone and blowing-in of a gas from the surface of bluntness, J. Eng. Phys. Thermophys., 80, No. 4, 751–759 (2007).

    Article  Google Scholar 

  7. A. M. Grishin and V. M. Fomin, Conjugate and Nonstationary Problems of Reactive Media Mechanics [in Russian], Nauka, Novosibirsk (1984).

  8. A. M. Grishin and V. I. Zinchenko, Conjugate heat exchange between a reactive solid body and a gas in the presence of nonequilibrium chemical reactions, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 121–128 (1974).

    Google Scholar 

  9. V. I. Zinchenko, Mathematical Simulation of Conjugate Problems on Heat and Mass Exchange [in Russian], Izd. Tomsk. Univ., Tomsk (1985).

  10. Yu. D. Shevelev, Three-Dimensional Problems of the Laminar Boundary Layer Theory [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  11. A. M. Grishin, A. N. Golovanov, and A. S. Yakimov, Conjugate heat exchange in a composite material, Prikl. Mekh. Tekh. Fiz., No. 4, 141–149 (1991).

  12. A. M. Grishin, A. D. Parashin, and A. S. Yakimov, Thermochemical destruction of a carbon-filled plastic under multiple pulsed loading, Fiz. Goreniya Vzryva, 29, No. 1, 87–95 (1993).

    Google Scholar 

  13. Yu. V. Polezhaev and F. P. Yurevich, Thermal Shielding [in Russian], Énergiya, Moscow (1976).

    Google Scholar 

  14. V. V. Lunev, K. M. Magomedov, and V. G. Pavlov, Hypersonic Flow over Blunt-Nosed Cones with Equilibrium Physicochemical Transformations [in Russian], Vych. Tsentr Akad. Nauk SSSR, Moscow (1968).

  15. V. I. Zinchenko and A. S. Yakimov, Regimes of thermochemical destruction of a carbon phenolic material under the action of a heat flow, Fiz. Goreniya Vzryva, 24, No. 2, 141–148 (1988).

    Google Scholar 

  16. S. V. Patankar and D. B. Spalding, Heat and Mass Transfer in Boundary Layers [Russian translation], Énergiya, Moscow (1970).

    Google Scholar 

  17. T. Сеbeсi, Behavior of turbulent flow near a porous wall with pressure gradient, AIAA J., 8, No. 12, 2152–2156 (1970).

    Article  Google Scholar 

  18. L. V. Kovalev, Heterogeneous Catalytic Processes in Aerothermodynamics [in Russian], Izd. Fiz.-Mat. Lit., Moscow (2002).

    Google Scholar 

  19. A. M. Grishin, V. I. Zinchenko, K. N. Efimov, A. N. Subbotin, and A. S. Yakimov, Iteration-Interpolation Method and Its Applications [in Russian], Izd. Tomsk. Univ., Tomsk (2004).

  20. R. N. Feldhuhn, Heat transfer from a turbulent boundary layer on a porous hemisphere, AIAA Paper, No. 119 (1976).

  21. G. Widhopf and R. Hall, Heat-transfer measurements on a blunted cone at angle of attack under transition and turbulent conditions, Raketn. Tekh. Kosmonavt., 10, No. 10, 71–79 (1972).

    Google Scholar 

  22. A. A. Samarskii, Introduction into the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).

  23. A. G. Gofman and A. M. Grishin, Theoretical investigation of the thermochemical destruction of graphite in a highenthalpy air, Prikl. Mekh. Tekh. Fiz., No. 4, 107–114 (1984).

  24. R. L. Becker, Influence of nonequilibrium chemical processes on the graphite sublimation, Raketn. Tekh. Kosmonavt., 15, No. 10, 21–29 (1977).

    Google Scholar 

  25. R. A. Andrievskii, Porous Cermet Materials [in Russian], Metallurgiya, Moscow (1964).

    Google Scholar 

  26. L. M. Buchnev, A. I. Smyslov, I. A. Dmitriev, A. F. Kuteinikov, and V. I. Kostikov, Experimental investigation of the enthalpy of a quasi-monocrystal of graphite and glassy carbon in the temperature range 300–3800 K, Teplofiz. Vys. Temp., 25, No. 6, 1120–1125 (1987).

    Google Scholar 

  27. O. M. Alifanov, A. P. Tryanin, and A. L. Lozhkin, Experimental investigation of the method of determining the internal heat-transfer coefficient in a porous body from the solution of the inverse problem, J. Eng. Phys. Thermophys., 52, No. 6, 340–346 (1987).

    Article  Google Scholar 

  28. V. P. Sosedov, Properties of Construction Carbon-Based Materials [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Yakimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 5, pp. 1266–1277, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, K.N., Ovchinnikov, V.A. & Yakimov, A.S. Influence of the Rotation of a Blunt-Nose Cone on the Heat Exchange in the Supersonic Flow Over it at an Angle of Attack. J Eng Phys Thermophy 91, 1199–1210 (2018). https://doi.org/10.1007/s10891-018-1849-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1849-1

Keywords

Navigation