Skip to main content
Log in

Improvement of the Processes of Liquid-Phase Epitaxial Growth of Nanoheteroepitaxial Structures

  • NANOSTRUCTURES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

We have revealed the shortcomings of equipment and technological approaches in growing nanoheteroepitaxial structures with quantum dots by liquid-phase epitaxy. We have developed and fabricated a new vertical barreltype cassette for growing quantum dots and epitaxial layers of various thicknesses in one technological process. A physico-mathematical simulation has been carried out of the processes of liquid-phase epitaxial growth of quantumdimensional structures with the use of the program product SolidWorks (FlowSimulation program). Analysis has revealed the presence of negative factors influencing the growth process of the above structures. The mathematical model has been optimized, and the equipment has been modernized without additional experiments and measurements. The flow dynamics of the process gas in the reactor at various flow rates has been investigated. A method for tuning the thermal equipment has been developed. The calculated and experimental temperature distributions in the process of growing structures with high reproducibility are in good agreement, which confirms the validity of the modernization made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Foikhtlender, Silicon–germanium nanostructures with quantum dots: Formation mechanism and electrical properties, Fiz. Tekh. Poluprovodn., 34, No. 11, 1281–1299 (2000).

  2. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop′ev, Zh. I. Alferov, and D. Bimberg, Quantum dots-containing heterostructures: production, properties, lasers (Review), Fiz. Tekh. Poluprovodn., 32, No. 4, 385–410 (1998).

  3. T. F. Kulyutkina, I. E. Maronchuk, A. I. Maronchuk, and M. V. Naidencova, Epitaxial Growth of Structures with Nanodimensional Features from Liquid Phase by Pulse Cooling of Substrate, US Patent No. 7 422 632 B2. Int. Cl. C30B 19/02. Date of patent September 9, 2008.

  4. I. E. Maronchuk, T. F. Kulyutkina, and I. I. Maronchuk, Method of Growth of Epitaxial Nanoheterojunction Structures with Quantum Dots Array, UA Patent No. 94 699. Int. Cl. С 30В 19/00, С 30В 29/00, Н 01L 21/20. Date of patent 10.06.2011. J. No. 5.

  5. I. I. Maronchuk, S. Bykovsky, S. Bondarec, and A. Velchenko, Obtaining nanoheteroepitaxial structures with quantum dots for high effective photovoltaic devices, investigation of their properties, TEKA Commission of Motorization and Energetics in Agriculture, Polish Academy of Sciences, 14, No. 1, 154–163 (2014).

  6. D. Dimova-Malinovska, H. Nichev, I. I. Maronchuk, I. E. Maronchuk, and D. D. Sanikovich, Study of the morphology of quantum dots grown by liquid phase epitaxy, J. Phys., Conf. Series, No. 700, 012043 (2016).

  7. I. E. Maronchuk, I. I. Maronchuk, T. F. Kulyutkina, and S. Yu. Bykovskii, Liquid-phase epitaxy and properties of nanostructures based on III-V compounds, Nanosist., Nanomater., Nanotekhnol., 10, No. 1, 77–88 (2012).

  8. D. Dimova-Malinovska, K. Lovchinov, I. I. Maronchuk, I. E. Maronchuk, and D. D. Sanikovich, Deposition by liquid epitaxy and study of the properties of nano-heteroepitaxial structures with quantum dots for high efficient solar cells, J. Phys., Conf. Series, No. 558, 012049 (2014).

  9. V. P. Ginkin, T. M. Lyukhanova, V. I. Folomeev, I. I. Maronchyk, A. V. Kartavykh, V. V. Rakov, and A. V. Egorov, Methodical research of thermal fields during crystallization in the "Polyzone" facility by Bridgman method, in: Proc. 4th Int. Conf. on Single Crystal Growth "Strength Problems & Heat Mass Transfer," Russia, Obninsk (2001), Vol. 4, 1003–1009.

  10. V. P. Ginkin, V. I. Folomeev, T. M. Lyukhanova, V. V. Rakov, I. I. Maronchuk, A. V. Kartavykh, and A. V. Egorov, Method research and developing a method to control directed semiconductor crystallization in space, J. Cryst. Growth, 236, No. 4, 551–556 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vel′chenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 2, pp. 518–524, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maronchuk, I.I., Sanikovich, D.D., Potapkov, P.V. et al. Improvement of the Processes of Liquid-Phase Epitaxial Growth of Nanoheteroepitaxial Structures. J Eng Phys Thermophy 91, 491–497 (2018). https://doi.org/10.1007/s10891-018-1769-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1769-0

Keywords

Navigation