Skip to main content
Log in

Influence of the Viscosity of a Liquid on the Dynamics of Spreading of its Drop

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A method of experimental investigation of the dynamics of spreading of a spherical drop of a viscous liquid over a horizontal solid surface at a small velocity of collision of the drop with the surface is proposed, and results of such an investigation are presented. A typical pattern of spreading of a liquid drop over a solid surface has been obtained and the quantitative characteristics of this process depending on the viscosity of the liquid were determined. The experimental data on spreading of drops of different liquids over a horizontal solid surface were analyzed by the dynamic wetting angle of these drops, and the results obtained were compared with the analogous data obtained in other works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. T. Wilson, J. L. Summers, Y. D. Shikhmurzaev, A. Clarke, and T. D. Blake, Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment, Phys. Rev. E, 73, No. 4, 1–10 (2006).

    Article  Google Scholar 

  2. Y. D. Shikmurzaev, Moving contact lines in liquid/liquid/solid structure, J. Fluid Mech., 334, 211–249 (1997).

    Article  MathSciNet  Google Scholar 

  3. Y. D. Shikmurzaev, The moving contact line on a smooth solid surface, Int. J. Multiphase Flow, 19, 589–610 (1993).

    Article  Google Scholar 

  4. A. L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech., 38, 159–192 (2006).

    Article  MathSciNet  Google Scholar 

  5. P. De Gens, Wetting: statics and dynamics, Usp. Fiz. Nauk, 151, Issue 4, 619–681 (1987).

    Article  Google Scholar 

  6. R. G. Cox, The dynamics of the spreading of liquids on a solid surface, J. Fluid Mech., 168, 169–194 (1986).

    Article  MATH  Google Scholar 

  7. T. D. Blake and J. M. Haynes, Kinetics of liquid–liquid displacement, J. Colloid Interface Sci., 30, No. 3, 421–423 (1969).

    Article  Google Scholar 

  8. J. G. Petrov, J. Ralston, M. Scheemilch, and R. A. Hynes, Dynamics of partial wetting and dewetting in well-defined systems. J. Phys. Chem. B, 107, No. 7, 1634–1645 (2003).

    Article  Google Scholar 

  9. P. Van Remoortere and P. Joos, About the kinetics of partial wetting, J. Colloid Interface Sci., 160, No. 2, 387–396 (1993).

    Article  Google Scholar 

  10. R. L. Hoffman, A study of the advancing interface. II. Theoretical prediction of the dynamic contact angle in liquid–gas systems, J. Colloid Interface Sci., 94, No. 2, 470–486 (1983).

    Article  Google Scholar 

  11. O. V. Voinov, Hydrodynamics of wetting, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 5, 76–84 (1976).

    Google Scholar 

  12. S. Sikalo, C. Tropea, and E. N. Ganic, Dynamic wetting angle of a spreading droplet, Exp. Thermal Fluid Sci., 29, 795–802 (2005).

    Article  Google Scholar 

  13. X. Wang, X. Peng, Y. Duan, and B. Wang, Dynamics of spreading of liquid on solid surface, Chinese J. Chem. Eng., 15, No. 5, 730–737 (2007).

    Article  Google Scholar 

  14. I. V. Roisman, L. Opfer, C. Tropea, M. Raessi, J. Mostaghimi, and S. Chandra, Drop impact onto a dry surface: role of the dynamic contact angle, Colloids Surfaces A: Physicochem. Eng. Aspects, 322, 183–191 (2008).

    Article  Google Scholar 

  15. T. S. Jiang, S. G. Oh, and J. C. Slattery, Correlation for dynamic contact angle, J. Colloid Interface Sci., No. 69, 74–77 (1979).

  16. D. C. Vadillo, A. Soucermarianadin, C. Delattre, and D. C. D. Roux, Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces, Phys. Fluids, 21, No. 12, 1–8 (2009).

    Article  Google Scholar 

  17. V. A. Arkhipov and A. S. Usanina, Investigation of the characteristics of drop spreading at small Reynolds numbers, Inzh. Fiz., No. 5, 38–42 (2010).

  18. D. P. Semchenko and A. G. Stromberg, Physical Chemistry [in Russian], Vysshaya Shkola, Moscow (1973).

    Google Scholar 

  19. I. T. Goronovskii, Yu. P. Nazarenko, and E. F. Nekryach, Concise Handbook on Chemistry [in Russian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  20. M. A. Ponomareva, A. S. Usanina, and V. A. Yakutenok, Calculation of the equilibrium forms of a drop located on a horizontal surface, Izv. Vyssh. Uchebn. Zaved., Fizika, 52, No. 7/2, 162–166 (2009).

    Google Scholar 

  21. G. Borgefors, Distance transformations in digital images, Computer Vision, Graphs, Image Process., 34, 344–371 (1986).

    Article  Google Scholar 

  22. A. Konushin, Tracking the point singularities of a scene, Komp. Graph. Multimediya, No. 1(5) (2003); http://cgm.computergraphics.ru/content/view/54.

  23. L. Becky and M. Abraham, The exponential power law: partial wetting kinetics and dynamic contact angles, Colloid Surfaces A: Physicochem. Eng. Aspects, 250, 409–414 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Usanina.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 1, pp. 43–52, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, V.A., Bondarchuk, S.S., Usanina, A.S. et al. Influence of the Viscosity of a Liquid on the Dynamics of Spreading of its Drop. J Eng Phys Thermophy 88, 42–51 (2015). https://doi.org/10.1007/s10891-015-1166-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1166-x

Keywords

Navigation