Skip to main content

Advertisement

Log in

Structure-Activity Relationships of Alkylpyrazine Analogs and Fear-Associated Behaviors in Mice

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Our previous studies identified alkyl pyrazine analogs in wolf urine that act as novel kairomones and induce a series of fear-associated behaviors in mice. A mixture of these alkyl pyrazines also effectively suppressed the approach of deer to a feeding area, and animals that did approach the marked area exhibited fear-associated behaviors. To investigate structure-activity relationships of alkyl pyrazines, four fear-associated behaviors - freezing, locomotion activity, odor investigation, and avoidance - were measured in experiments on female C57BL/6 J mice. Of the 17 compounds tested, 2,3-diethylpyrazine, 3-ethyl-2,5-dimethylpyrazine, and 3-ethyl-2,5-dimethylpyrazine induced all four fear-associated behaviors. 2,3,5-Trimethylpyrazine also induced three of the fear-associated behaviors, but did not decrease locomotion. Multivalent analysis of behaviors clearly demonstrated that these four compounds formed an independent cluster and were the most active. Structure-activity relationships revealed that active alkyl pyrazines inducing all four fear-associated behaviors had methyl or ethyl group(s), but not longer carbon chains, and alkyl side chains consisting of four carbon atoms in total were present in the most potent analogs. This study is the first experimental investigation of structure-activity relationships between alkyl pyrazine analogs and fear-associated behaviors in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bohman B, Jeffares L, Flematti G, Phillips RD, Dixon KW, Peakall R, Barrow RA (2012) The discovery of 2-hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine: a semiochemical in orchid pollination. Org Lett 14:2576–2578

    Article  CAS  PubMed  Google Scholar 

  • Bohman B, Phillips RD, Menz MHM, Berntsson BW, Flematti GR, Barrow RA, Dixon KW, Peakall R (2014) Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytol 203:939–952

    Article  CAS  PubMed  Google Scholar 

  • Brechbühl J, Klaey M, Broillet M-C (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095

    Article  PubMed  Google Scholar 

  • Brechbühl J, Moine F, Klaey M, Nenniger-Tosato M, Hurni N, Sporkert F, Giroud C, Broillet M-C (2013) Mouse alarm pheromone shares structural similarity with predator scents. Proc Natl Acad Sci U S A 110:4762–4767

    Article  PubMed  PubMed Central  Google Scholar 

  • Brechbühl J, Moine F, Nenniger Tosato M, Sporkert F, Broillet M-C (2015) Identification of pyridine analogs as new predator-derived kairomones. Front Neurosci 9:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Burdock GA, Carabin IG (2008) Safety assessment of 2-ethyl-3,(5 or 6) dimethylpyrazine as a food ingredient. Regul Toxicol Pharmacol 50:303–312

    Article  CAS  PubMed  Google Scholar 

  • Daev EV, Vyborova AM, Kazarova VE, Dukel’skaya AV (2012) Effect of two pyrazine-containing chemosignals on cells of bone marrow and testes in male house mice (Mus musculus L.). J Evol Biochem Phys 48:18–23

    Article  CAS  Google Scholar 

  • Derstine NT, Troyer EJ, Suttles CN, Siderhurst LA, Jang EB, Siderhurst MS (2012) Field trapping the little fire ant, Wasmannia auropunctata. J Insect Sci 12:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickschat JS, Wagner-Döbler I, Schulz S (2005) The chafer pheromone buibuilactone and ant pyrazines are also produced by marine bacteria. J Chem Ecol 31:925–947

    Article  CAS  PubMed  Google Scholar 

  • EFSA Panel on Food Contact Materials Enzymes, Flavourings and Processing Aids (CEF) (2011) Scientific opinion on flavouring group evaluation 17, revision 3 (FGE.17Rev3): pyrazine derivatives from chemical group 24. EFSA J 9:2456–2522

    Article  Google Scholar 

  • Endres T, Fendt M (2009) Aversion- vs fear-inducing properties of 2, 4, 5-trimethyl-3-thiazoline, a component of fox odor, in comparison with those of butyric acid. J Exp Biol 212:2324–2327

    Article  CAS  PubMed  Google Scholar 

  • Fanselow MS, Helmstetter FJ (1988) Conditional analgesia, defensive freezing, and benzodiazepines. Behav Neurosci 102:233–243

    Article  CAS  PubMed  Google Scholar 

  • Fendt M (2006) Exposure to urine of canids and felids, but not of herbivores, induces defensive behavior in laboratory rats. J Chem Ecol 32:2617–2627

    Article  CAS  PubMed  Google Scholar 

  • Fendt M, Endres T, Lowry CA, Apfelbach R, McGregor IS (2005) TMT-induced autonomic and behavioral changes and the neural basis of its processing. Neurosci Biobehav Rev 29:1145–1156

    Article  CAS  PubMed  Google Scholar 

  • Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ, Datta SR, Spehr M, Fendt M, Liberles SD (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci U S A 108:11235–11240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox MW, Cohen JA (1977) Canid communication. In: Sebeok TA (ed) How animals communicate. Indiana University Press, Bloomington, pp 728–748

    Google Scholar 

  • Isosaka T, Matsuo T, Yamaguchi T, Funabiki K, Nakanishi S, Kobayakawa R, Kobayakawa K (2015) Htr2a-expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell 163:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Nagano M, Suzuki H, Murakoshi T (2010) Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice. Neuropharmacology 58:746–757

    Article  CAS  PubMed  Google Scholar 

  • Jemiolo B, Novotny M (1994) Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiol Behav 55:519–522

    Article  CAS  PubMed  Google Scholar 

  • Kaufman PE, Mann RS, Butler JF (2010) Evaluation of semiochemical toxicity to Aedes aegypti, Ae. albopictus and Anopheles quadrimaculatus (Diptera: Culicidae). Pest Manag Sci 66:497–504

    Article  CAS  PubMed  Google Scholar 

  • Kluever BM, Howery LD, Breck SW, Bergman DL (2009) Predator and heterospecific stimuli alter behaviour in cattle. Behav Process 81:85–91

    Article  Google Scholar 

  • Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Gautam N (2008) Allelotoxicity of Parthenium leaf extracts on cytomorphological behaviour of sunflower (Helianthus annuus). J Environ Biol 29:243–247

    CAS  PubMed  Google Scholar 

  • Laska M, Persson O, Hernandez Salazar LT (2009) Olfactory sensitivity for alkylpyrazines – a comparative study in CD-1 mice and spider monkeys. J Exp Zool A 311:278–288

    Article  Google Scholar 

  • Nilsson E, Bengtsson G (2004) Endogenous free fatty acids repel and attract Collembola. J Chem Ecol 30:1431–1443

    Article  CAS  PubMed  Google Scholar 

  • Novotny M, Jemiolo B, Harvey S, Wiesler D, Marchlewska-Koj A (1986) Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231:722–725

    Article  CAS  PubMed  Google Scholar 

  • Osada K, Tashiro T, Mori K, Izumi H (2008) The identification of attractive volatiles in aged male mouse urine. Chem Senses 33:815–823

    Article  CAS  PubMed  Google Scholar 

  • Osada K, Hanawa M, Tsunoda K, Izumi H (2011) Alteration of mouse urinary odor by ingestion of the xenobiotic monoterpene citronellal. Chem Senses 36:137–147

    Article  PubMed  Google Scholar 

  • Osada K, Kurihara K, Izumi H, Kashiwayanagi M (2013) Pyrazine analogues are active components of wolf urine that induce avoidance and freezing behaviours in mice. PLoS One 8:e61753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osada K, Miyazono S, Kashiwayanagi M (2014) Pyrazine analogs are active components of wolf urine that induce avoidance and fear-associated behaviors in deer. Front Behav Neurosci 8:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Osada K, Miyazono S, Kashiwayanagi M (2015) The scent of wolves: pyrazine analogs induce avoidance and vigilance behaviors in prey. Front Neurosci 9:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons MH, Blumstein DT (2010) Familiarity breeds contempt: kangaroos persistently avoid areas with experimentally deployed dingo scents. PLoS One 5:e10403

    Article  PubMed  PubMed Central  Google Scholar 

  • Poiner GO Jr, Marshall CJ, Buckley R (2007) One hundred million years of chemical warfare by insects. J Chem Ecol 33:1663–1669

    Article  Google Scholar 

  • Sarrafchi A, Odhammer AME, Hernandez Salazar LT, Laska M (2013) Olfactory sensitivity for six predator odorants in CD-1 mice, human subjects, and spider monkeys. PLoS One 8:e80621

    Article  PubMed  PubMed Central  Google Scholar 

  • Severud WJ, Belant JL, Bruggink JG, Windels SK (2011) Predator cues reduce American beaver use of foraging trails. Human-Wildl Interact 5:296–305

    Google Scholar 

  • Sharma K, Vander Meer RK, Fadamiro HY (2011) Phorid fly, Pseudacteon tricuspis, response to alkylpyrazine analogs of a fire ant, Solenopsis invicta, alarm pheromone. J Insect Physiol 57:939–944

    Article  CAS  PubMed  Google Scholar 

  • Sullivan TP, Nordstrom LO, Sullivan DS (1985a) Use of predator odors as repellents to reduce feeding damage by herbivores: I. Snowshoe hares (Lepus americanus). J Chem Ecol 11:903–919

    Article  CAS  PubMed  Google Scholar 

  • Sullivan TP, Nordstrom LO, Sullivan DS (1985b) Use of predator odors as repellents to reduce feeding damage by herbivores: II. Black-tailed deer (Odocoileus hemionus columbianus). J Chem Ecol 11:921–935

    Article  CAS  PubMed  Google Scholar 

  • Tentschert J, Bestmann H-J, Hölldobler B, Heinze J (2000) 2, 3-dimethyl-5-(2-methylpropyl) pyrazine, a trail pheromone component of Eutetramorium mocquerysi Emery (1899) (hymenoptera: Formicidae). Naturwissenschaften 87:377–380

    Article  CAS  PubMed  Google Scholar 

  • Tierney KB, Baldwin DH, Hara TJ, Ross PS, Scholz NL, Kennedy CJ (2010) Olfactory toxicity in fishes. Aquat Toxicol 96:2–26

    Article  CAS  PubMed  Google Scholar 

  • Vander Meer RK, Preston CA, Choi MY (2010) Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta. J Chem Ecol 36:163–170

    Article  CAS  PubMed  Google Scholar 

  • Vernet-Maury E, Polak EH, Demael A (1984) Structure-activity relationship of stress-inducing odorants in the rat. J Chem Ecol 10:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Vick KA, Guidi M, Stackman RW Jr (2010) In vivo pharmacological manipulation of small conductance Ca(2+)-activated K(+) channels influences motor behavior, object memory and fear conditioning. Neuropharmacology 58:650–659

    Article  CAS  PubMed  Google Scholar 

  • Wallace KJ, Rosen JB (2000) Predator odor as an unconditioned fear stimulus in rats: elicitation of freezing by trimethylthiazoline, a component of fox feces. Behav Neurosci 114:912–922

    Article  CAS  PubMed  Google Scholar 

  • Woolfson A, Rothschild M (1990) Speculating about pyrazines. Proc Biol Sci 242:113–119

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Jang EB, Siderhurst MS (2014) Differential field responses of the little fire ant, Wasmannia auropunctata (Roger), to alarm pheromone enantiomers. J Chem Ecol 40:1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Soini HA, Bruce KE, Wiesler D, Woodley SK, Baum MJ, Novotny MV (2005) Putative chemosignals of the ferret (Mustela furo) associated with individual and gender recognition. Chem Senses 30:727–737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japanese Society for the Promotion of Science KAKENHI Grant (26450141 and 15 K18573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumi Osada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osada, K., Miyazono, S. & Kashiwayanagi, M. Structure-Activity Relationships of Alkylpyrazine Analogs and Fear-Associated Behaviors in Mice. J Chem Ecol 43, 263–272 (2017). https://doi.org/10.1007/s10886-017-0822-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0822-3

Keywords

Navigation