Skip to main content
Log in

Floral Volatiles in a Sapromyiophilous Plant and Their Importance in Attracting House Fly Pollinators

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Floral scent in sapromyiophilous plants often consists of complex blends with not only fetid (e.g., sulfides) but also sweet (e.g., terpenoids) volatile organic compounds, and a recent study suggests that both groups of compounds are involved in pollinator attraction. However, little is known about the number and identity of compounds involved in pollinator attraction in these deceptive plants that mimic breeding sites of fly pollinators. In the present paper, we studied flower volatiles of sapromyiophilous Periploca laevigata and their capability to elicit biological responses in one of the pollinator species, Musca domestica. Floral volatiles were collected by dynamic headspace and analyzed by gas chromatography/mass spectrometry (GC/MS), and electrophysiological (GC/EAD) and behavioral assays (two choice olfactometer) were conducted. In the floral scent of P. laevigata, we detected 44 compounds, of which indole, β-caryophyllene, and germacrene D, as well as dimethyl trisulfide, which was present in trace amounts, were electrophysiologically active in the antennae of M. domestica. However, when we evaluated in behavioral experiments the attractiveness of the electrophysiologically active compounds (complete mixture against partial mixtures or against single compounds), we found that indole was the only attractive compound for the flies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream, Illinois

    Google Scholar 

  • Ao M, Liu B, Wang L (2013) Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida. Nat Prod Res 27:37–40

    Article  CAS  PubMed  Google Scholar 

  • Asclepol database. Germany Department of Plant Systematics, University of Bayreuth. Available: http://www.uni-bayreuth.de/departments/planta2/research/pollina/as_pol_t.html. Accessed 26 July 2014

  • Burger H, Dötterl S, Ayasse M (2010) Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct Ecol 24:1234–1240

    Article  Google Scholar 

  • Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435

    Article  PubMed  Google Scholar 

  • Cossé AA, Baker TC (1996) House flies and pig manure volatiles: wind tunnel behavioral studies and electrophysiological evaluations. J Agric Entomol 13:301–317

    Google Scholar 

  • Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 147–198

    Chapter  Google Scholar 

  • Dobson HEM, Bergström G (2000) The ecology of pollen odors. Plant Syst Evol 222:63–87

    Article  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perespectives. Cr Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • El-Sayed AM (2014) The pherobase: Database of pheromones and semiochemicals. Available: http://www.pherobase.com. Accessed 04 Oct 2014

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford

    Google Scholar 

  • Farré‐Armengol G, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2014) Changes in floral bouquets from compound-specific responses to increasing temperatures. Glob Chang Biol. doi:10.1111/gcb.12628

    PubMed  Google Scholar 

  • Förster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, Pfeffer K (2007) Pilot study on synanthropic flies (e.g. Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol Res 101:243–246

    Article  PubMed  Google Scholar 

  • Ghrabi Z (2005) A guide to medicinal plants in north Africa. IUCN Centre for Mediterranean Cooperation, Malaga

    Google Scholar 

  • Jürgens A, Dötterl S, Meve U (2006) The chemical nature of fetid floral odours in stapeliads (Apocynaceae –Asclepiadoideae - Ceropegieae). New Phytol 172:452–468

    Article  PubMed  Google Scholar 

  • Jürgens A, Wee S-L, Shuttleworth A, Johnson SD (2013) Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol Lett. doi:10.1111/ele.12152

    PubMed  Google Scholar 

  • Kite GC, Hetterscheid WLA, Lewis MJ, Boyce PC, Ollerton J, Cocklin E, Diaz A, Simmonds MSJ (1998) Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Gardens, Kew, UK, pp 295–315

    Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumblebees in flower mimic systems. Behav Ecol 12:447–456

    Article  Google Scholar 

  • Larraín PS, Salas CF (2008) House fly (Musca domestica L.) (Diptera: Muscidae) development in different types of manure. Chil J Agric Res 68:192–197

    Article  Google Scholar 

  • Larsson MC, Stensmyr MC, Bice SB, Hansson BS (2003) Attractiveness of fruit and flower odorants detected by olfactory receptor neurons in the fruit chafer Pachnoda marginata. J Chem Ecol 29:1253–1268

    Article  CAS  PubMed  Google Scholar 

  • McDonald JH (2009) Handbook of biological statistics, 2nd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • Mitchell RJ, Flanagan RJ, Brown BJ, Waser NM, Karron JD (2009) New frontiers in competition for pollination. Ann Bot 103:1355–1363

    Article  PubMed Central  PubMed  Google Scholar 

  • Moré M, Cocucci AA, Raguso RA (2013) The importance of oligosulfides in the attraction of fly pollinators to the brood-site deceptive species Jaborosa rotacea (Solanaceae). Int J Plant Sci 174:863–876

    Article  Google Scholar 

  • Morey RA, Khandagle AJ (2012) Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L. Parasitol Res 111:1799–1805

    Article  PubMed  Google Scholar 

  • Mulla MS, Hwang YS, Axelrod H (1977) Attractants for synanthropic flies: chemical attractants for domestic flies. J Econ Entomol 70:644–648

    Article  CAS  Google Scholar 

  • O’Neil MJ (ed) (2013) The Merck index: An encyclopedia of chemicals, drugs, and biologicals, 15th edn. Cambridge, RSC Publishing

    Google Scholar 

  • Pisciotta S, Raspi A, Sajeva M (2011) First records of pollinators of two co-occurring Mediterranean Apocynaceae. Plant Biosyst 145:141–149

    Article  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Schäffler I, Balao F, Dötterl S (2012) Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species. Ann Bot 110:125–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656

    Article  PubMed  Google Scholar 

  • Shuttleworth A, Johnson SD (2010) The missing stink: sulphur compounds can mediate a shift between fly and wasp pollination systems. Proc R Soc London B Biol Sci 277:2811–2819

    Article  CAS  Google Scholar 

  • StatSoft Inc. (2013) STATISTICA (Data Analysis Software System), Version 12. http://www.statsoft.com

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy A (2002) Rotting smell of dead-horse arum florets. Nature 420:625–626

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  CAS  PubMed  Google Scholar 

  • Urru I, Stensmyr MC, Hansson BS (2011) Pollination by brood-site deception. Phytochemistry 72:1655–1666

    Article  CAS  PubMed  Google Scholar 

  • van der Niet T, Hansen DM, Johnson SD (2011) Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses. Ann Bot 107:981–992

    Article  PubMed Central  PubMed  Google Scholar 

  • Woodcock TS, Larson BMH, Kevan PG, Inouye DW, Lunau K (2014) Flies and flowers II: floral attractants and rewards. J Pollin Ecol 12:63–94

    Google Scholar 

  • Zito P, Sajeva M (2012) Periploca laevigata Aiton subsp. angustifolia (Labill.) Markgraf on Lampedusa Island. Asklepios 113:3–16

    Google Scholar 

  • Zito P, Guarino S, Peri E, Sajeva M, Colazza S (2013) Electrophysiological and behavioural responses of the housefly to “sweet” volatiles of the flowers of Caralluma europaea (Guss.) N.E. Br. Arthropod Plant Interact 7:485–489. doi:10.1007/s11829-013-9270-3

    Article  Google Scholar 

  • Zito P, Sajeva M, Raspi A, Dötterl S (2014) Dimethyl disulfide and dimethyl trisulfide: so similar yet so different in evoking biological responses in saprophilous flies. Chemoecology 24:261–267. doi:10.1007/s00049-014-0169-y

Download references

Acknowledgments

We thank Dr Irmgard Schäffler for methodological support and constructive discussions, Mr Guaraci Duran Cordeiro for help during the captures of flies, and owners of the horse barn for agreeing to perform the captures on their property. We thank the staff of Riserva Naturale Orientata Isola di Lampedusa for the assistance and the logistic support during the collection of the volatiles of Periploca laevigata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Zito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material – ESM 1

Amount of EAD-active compounds in Periploca laevigata subsp. angustifolia flowers and released during our biotests. The presence of these compounds in organic matter and sapromyiophilous plants, and their capability in eliciting biological response in flies is also given (according to Jürgens et al. 2013). (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zito, P., Dötterl, S. & Sajeva, M. Floral Volatiles in a Sapromyiophilous Plant and Their Importance in Attracting House Fly Pollinators. J Chem Ecol 41, 340–349 (2015). https://doi.org/10.1007/s10886-015-0568-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0568-8

Keywords

Navigation