Skip to main content
Log in

Bifurcations in Nagumo Equations on Graphs and Fiedler Vectors

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Reaction-diffusion equations serve as a basic framework for numerous dynamic phenomena like pattern formation and travelling waves. Spatially discrete analogues of Nagumo reaction-diffusion equation on lattices and graphs provide insights how these phenomena are strongly influenced by the discrete and continuous spatial structures. Specifically, Nagumo equations on graphs represent rich high dimensional problems which have an exponential number of stationary solutions in the case when the reaction dominates the diffusion. In contrast, for sufficiently strong diffusion there are only three constant stationary solutions. We show that the emergence of the spatially heterogeneous solutions is closely connected to the second eigenvalue of the Laplacian matrix of a graph, the algebraic connectivity. For graphs with simple algebraic connectivity, the exact type of bifurcation of these solutions is implied by the properties of the corresponding eigenvector, the so-called Fiedler vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Alternatively we could fix \( \lambda =1\), which is more common, but we prefer to fix the diffusion parameter because of the direct natural connection between the value of \(\lambda \) and the algebraic connectivity \(\lambda _2\).

  2. We omit the case \( \lambda '(0) = 0 \) and \( \lambda ''(0) = 0 \), since the behavior of bifurcation depends on higher order terms for which we do not obtain representing formulas. Consequently, the case \(\left|a-\tfrac{1}{2}\right|= \delta \) is missing in the statement of Theorem 1.1, case 3.

References

  1. de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423(1), 53–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biyikoglu, T., Leydold, J., Stadler, P.F.: Laplacian Eigenvectors of Graphs. Springer (2007)

  3. Bodó, Á., Simon, P.L.: Transcritical bifurcation yielding global stability for network processes. Nonlinear Anal. 196, 111808 (2020)

  4. Chow, S.N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Diff. Eq. 149(2), 248–291 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(98), 298–305 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Math. J. 25(4), 619–633 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer (2001)

  8. Henderson, M.E., Keller, H.B.: Complex bifurcation from real paths. SIAM J. Appl. Math 50(2), 460–482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hupkes, H.J., Morelli, L., Stehlík, P.: Bichromatic travelling waves for lattice Nagumo equations. SIAM J. Appl. Dyn. Syst. 18(2), 973–1014 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hupkes, H.J., Morelli, L., Stehlík, P., Švígler, V.: Counting and ordering periodic stationary solutions of lattice Nagumo equations. Appl. Math. Lett. 98, 398–405 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hupkes, H.J., Morelli, L., Stehlík, P., Švígler, V.: Multichromatic travelling waves for lattice Nagumo equations. Appl. Math. Comput. 361, 430–452 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hupkes, H.J., Pelinovsky, D., Sandstede, B.: Propagation failure in the discrete Nagumo equation. Proceed. Am. Math. Soc. 139(10), 3537–3537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to Partial Differential Equations. Springer (2012)

  15. Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. Springer (2017)

  16. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433(7023), 312–316 (2005)

    Article  Google Scholar 

  17. Mallet-Paret, J.: Spatial patterns, spatial chaos and traveling waves in lattice differential equations. In: Stochastic and Spatial Structures of Dynamical Systems, 45, pp. 105–129. Royal Netherlands Academy of Sciences., Amsterdam (1996)

  18. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Diff. Eq. 11(1), 49–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Masuda, N., Porter, M.A., Lambiotte, R.: Random walks and diffusion on networks. Phys. Rep. 716–717, 1–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197–198, 143–176 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohar, B.: The Laplacian spectrum of graphs. In: Graph Theory, Combinatorics, and Applications, 2, pp. 871–898. Wiley (1991)

  22. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proceed. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  23. Pereira, T., Eldering, J., Rasmussen, M., Veneziani, A.: Towards a theory for diffusive coupling functions allowing persistent synchronization. Nonlinearity 27(3), 501–525 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Slavík, A.: Lotka-Volterra competition model on graphs. SIAM J. Appl. Dyn. Syst. 19(2), 725–762 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stehlík, P.: Exponential number of stationary solutions for Nagumo equations on graphs. J. Math. Anal. Appl. 455(2), 1749–1764 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tao, T., Vu, V.: Random matrices have simple spectrum. Combinatorica 37(3), 539–553 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Diff. Eq. 96(1), 1–27 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate discussions with Hermen Jan Hupkes, Tomáš Kaiser, Roman Nedela, and Antonín Slavík. The authors acknowledge the support of the project LO1506 of the Czech Ministry of Education, Youth and Sports under the program NPUI. Moreover, the first and second authors have been supported by the Czech Science Foundation, grants no. GA20-11164L and GA18-03253S, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Stehlík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stehlík, P., Švígler, V. & Volek, J. Bifurcations in Nagumo Equations on Graphs and Fiedler Vectors. J Dyn Diff Equat 35, 2397–2412 (2023). https://doi.org/10.1007/s10884-021-10101-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10101-6

Keywords

Mathematics Subject Classification

Navigation