Skip to main content

Advertisement

Log in

Global Threshold Dynamics of an Infection Age-Space Structured HIV Infection Model with Neumann Boundary Condition

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper aims to the investigation of the global threshold dynamics of an infection age-space structured HIV infection model. The model is formulated in a bounded domain involving two infection routes (virus-to-cell and cell-to-cell) and Neumann boundary conditions. We first transform the original model to a hybrid system containing two partial differential equations and a Volterra integral equation. By appealing to the theory of fixed point problem together with Picard sequences, the well-posedness of the model is shown by verifying that the solution exists globally and the solution is ultimately bounded. Under the Neumann boundary condition, we establish the explicit expression of the basic reproduction number. By analyzing the distribution of characteristic roots of the associated characteristic equation in terms of the basic reproduction number, we achieve the local asymptotic stability of the steady states. The global asymptotic stability of the steady states is established by the technique of Lyapunov functionals, respectively. Numerical simulations are performed to validate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces. SIAM Rev. 18, 620–709 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, Wiley, Chichester (2003)

    MATH  Google Scholar 

  3. Coombs, D., Hyman, J.M., Perelson, A.S., Nelson, P.W., Gilchrist, M.A.: An age-structured model of hiv infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 9, 267–288 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Chekroun, A., Kuniya, T.: An infection age-space structured SIR epidemic model with Neumann boundary condition. Appl. Anal. 99, 1972–1985 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Chekroun, A., Kuniya, T.: Global threshold dynamics of an infection age-structured SIR epidemic model with diffusion under the Dirichlet boundary condition. J. Differ. Equ. 269, 117–148 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Cheng, C., Dong, Y., Takeuchi, Y.: An age-structured virus model with two routes of infection in heterogeneous environments. Nonlinear Anal. RWA 39, 464–91 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Ducrot, A., Demasse, R.D.: An age-structured within-host model for multistrain malaria infections. SIAM J. Appl. Math. 73, 572–593 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured model with diffusion. Proc. R. Soc. Edinb. A 139, 459–482 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Ducrot, A., Magal, P.: Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity 24, 2891–2911 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Dimitrov, D.S., Willey, R.L., Sato, H., et al.: Quantitation of human immunodeficiency virus type 1 infection kinetics. J. Virol. 67, 2182–2190 (1993)

    Google Scholar 

  12. Fackler, O.T., Murooka, T.T., Imle, A., et al.: Towards an integrative understanding of HIV-1 spread. Nat. Rev. Microbiol. 12, 563–574 (2014)

    Google Scholar 

  13. Feng, Z., Rong, L.: The influence of anti-viral drug therapy on the evolution of HIV-1 pathogens, DIMACS Ser. Discr. Math. Theo. Comp. Sci. 71, 261–279 (2006)

    Google Scholar 

  14. Fitzgibbon, W.E., Parrott, M.E., Webb, G.F.: Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete Contin. Dyn. Syst. 1, 35–57 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Fitzgibbon, W.E., Morgana, J.J., Webb, G.F., Wu, Y.: A vector-host epidemic model with spatial structure and age of infection. Nonlinear Anal. RWA 41, 692–705 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Freedman, H.I., Moson, P.: Persistence definitions and their connections. Proc. Am. Math. Soc. 109, 1025–1033 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995)

    Google Scholar 

  18. Hübner, W., McNerney, G.P., Chen, P., et al.: Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323, 1743–1747 (2009)

    Google Scholar 

  19. Huang, G., Liu, X., Takeuchi, Y.: Lyapunov functions and global stability for age-structured HIV infection model. SIAM J. Appl. Math. 72, 25–38 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Hsu, S.B., Wang, F.-B., Zhao, X.-Q.: Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone. J. Dyn. Differ. Equ. 23, 817–842 (2011)

    MathSciNet  MATH  Google Scholar 

  21. It\(\hat{{\rm o}}\), S.: Diffusion Equations, Translations of Mathematical Monographs, vol. 114. American Mathematical Society, Providence (1992)

  22. Iwami, S., Takeuchi, J.S., Nakaoka, S., et al.: Cell-to-cell infection by HIV contributes over half of virus infection. Elife 4, e08150 (2015)

    Google Scholar 

  23. Lai, X., Zou, X.: Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-cell transmission. SIAM J. Appl. Math. 74(3), 898–917 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Liu, S., Zhang, R.: On an age-structured hepatitis B virus infection model with HBV DNA-containing capsids. Bull. Malays. Math. Sci. Soc. 44, 1345–1370 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Lorenzo-Redondo, R., Fryer, H.R., Bedford, T., et al.: Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530, 51–56 (2016)

    Google Scholar 

  26. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89, 1109–1140 (2010)

    MathSciNet  MATH  Google Scholar 

  27. McCluskey, C.C., Yang, Y.: Global stability of a diffusive virus dynamics model with general incidence functions and time delay. Nonlinear Anal. RWA 25, 64–78 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Nelson, P.W., Gilchris, M.A., Coombs, D., Hyman, J.M., Perelson, A.S.: An age-structured model of HIV infection that allow for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng. 1, 267–288 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Pazy, A.: Semigroups of Linear Operators and Application to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  30. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Google Scholar 

  31. Perelson, A.S., Rong, L., Feng, Z.: Mathematical analysis of age-structured HIV-1 dynamics with combination antiviral therapy. SIAM J. Appl. Math. 67, 731–756 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Qesmi, R., Elsaadany, S., Heffernan, J.M., Wu, J.: A hepatitis B and C virus model with age since infection that exhibits backward bifurcation. SIAM J. Appl. Math. 71, 1509–1530 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Rong, L., Feng, Z., Perelson, A.S.: Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J. Appl. Math. 67, 731–756 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Ren, X., Tian, Y., Liu, L., Liu, X.: A reaction-diffusion within-host HIV model with cell-to-cell transmission. J. Math. Biol. 76, 1831–1872 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Smith, H.L., Thieme, H.R.: Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, vol. 118. American Mathematical Society, Providence (2011)

    Google Scholar 

  36. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence (1995)

    Google Scholar 

  37. Sigal, A., Kim, J.T., Balazs, A.B., Dekel, E., Mayo, A., Milo, R., Baltimore, D.: Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477, 95–98 (2011)

    Google Scholar 

  38. Sattentau, Q.: The direct passage of animal viruses between cells. Curr. Opin. Virol. 1, 396–402 (2011)

    Google Scholar 

  39. Shu, H., Chen, Y., Wang, L.: Impacts of the cell-free and cell-to-cell infection modes on viral dynamics. J. Dyn. Differ. Equ. 30, 1817–1836 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Wang, J., Lang, J., Zou, X.: Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission. Nonlinear Anal. RWA 34, 75–96 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Walker, J.A.: Dynamical Systems and Evolution Equations: Theory and Applications, Mathematical Concepts and Methods in Science and Engineering, vol. 20. Springer, New York (1980)

    Google Scholar 

  42. Wang, W., Zhao, X.-Q.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Wu, P., Zhao, H.: Dynamics of an HIV infection model with two infection routes and evolutionary competition between two viral strains. Appl. Math. Model. 84, 240–264 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Wu, P., Zhao, H.: Mathematical analysis of an age-structured HIV/AIDS epidemic model with HAART and spatial diffusion. Nonlinear Anal. RWA. 60, 103289 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Yan, D., Fu, X.: Asymptotic analysis of an age-structured HIV infection model with logistic target-cell growth and two infecting routes. Int. J. Bifurcat. Chaos 30, 2050059 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Yan, D., Fu, X.: Analysis of an age-structured HIV infection model with logistic target-cell growth and antiretroviral therapy. IMA J. Appl. Math. 83, 1037–1065 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Yang, J., Xu, R., Li, J.: Threshold dynamics of an age-space structured brucellosis disease model with Neumann boundary condition. Nonlinear Anal. RWA. 50, 192–217 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, W., Zou, L., Ruan, S.: An age-structured model for the transmission dynamics of hepatitis B. SIAM J. Appl. Math. 70, 3121–3139 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, X., Liu, Z.: Bifurcation analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions. Int. J. Bifurcat. Chaos 28, 1850109 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, X., Liu, Z.: Periodic oscillations in HIV transmission model with intracellular time delay and infection-age structure. Commun. Nonlinear Sci. Numer. Simul. 91, 105463 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments to the previous version of our manuscript. J. Wang was supported by National Natural Science Foundation of China (Nos. 12071115, 11871179), and Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems. R. Zhang was supported by the National Natural Science Foundation of China (No. 12101309), the China Postdoctoral Science Foundation (No. 2021M691577) and the Postdoctoral Fundation of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinliang Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, R. & Gao, Y. Global Threshold Dynamics of an Infection Age-Space Structured HIV Infection Model with Neumann Boundary Condition. J Dyn Diff Equat 35, 2279–2311 (2023). https://doi.org/10.1007/s10884-021-10086-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10086-2

Keywords

Mathematics Subject Classification

Navigation