Skip to main content
Log in

Viscosity Solution of System of Integro-Partial Differential Equations with Interconnected Obstacles of Non-local Type Without Monotonicity Conditions

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study a system of second order integro-partial differential equations with interconnected obstacles with non-local terms, related to an optimal switching problem with the jump-diffusion model. Getting rid of the monotonicity condition on the generators with respect to the jump component, we construct a continuous viscosity solution which is unique in the class of functions with polynomial growth. In our study, the main tool is the associated of reflected backward stochastic differential equations with jumps with interconnected obstacles for which we show the existence of a unique Markovian solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-diffrential equations. Ann. Inst. H. Poincaré-Anal. Non Linéaire 13(3), 293–317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Int.J. Probab. Stoch. Process. 60(1–2), 57–83 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Barles, G., Chasseigne, E., Imbert, C.: On the Dirichlet problem for second-order elliptic integro-differential equations. India Univ. Math. J. 57(1), 213–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: Viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, I.H., Jakobsen, E.R., Karlsen, K.H.: Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optim. 62(1), 47–80 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Essaky, E.H.: Reflected backward stochastic differential equation with jumps and RCLL obstacle. Bull. Sci. Math. 132(8), 690–710 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chassagneux, J.-F., Elie, R., Kharroubi, I.: A note on existence and uniqueness for solutions of multidimensional reflected BSDEs. Electron. Commun. Probab. 16, 120–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujiwara, T., Kunita, H.: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ. 25(1), 71–106 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Hamadène, S.: Viscosity solutions for second order integro-differential equations without monotonicity condition: a new result. Nonlinear Anal. 147, 213–235 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamadène, S., Morlais, M.-A.: Viscosity solutions of systems of PDEs with interconnected obstacles and switching problem. Appl. Math. Optim. 67(2), 163–196 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamadène, S., Morlais, M.-A.: Viscosity solutions for second order integro-differential equations without monotonicity condition: the probabilistic approach. Stochastics 88(4), 632–649 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hamadène, S., Ouknine, Y.: Reflected backward stochastic differential equation with jumps and random obstacle. Electron. J. Probab. 8(2), 1–20 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Hamadène, S., Zhang, J.: Switching problem and related system of reflected backward SDEs. Stochast. Process. Appl. 120(4), 403–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamadène, S., Zhao, X.: Systems of integro-PDEs with interconnected obstacles and multi-modes switching problem driven by Lèvy process. Nonlinear Differ. Equ. Appl. 22(6), 1607–1660 (2015)

    Article  MATH  Google Scholar 

  15. Hamadène, S., Zhao, X.: Viscosity solution of system of variational inequalities with interconnected bilateral obstacles of non-local type. J. Dyn. Differ. Equ. (2017)

  16. Hu, Y., Tang, S.: Multi-dimensional bsde with oblique reflection and optimal switching. Probab. Theory Relat. Fields 147(1), 89–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lundström, N.L.P., Nyström, K., Olofsson, M.: Systems of variational inequalities for non-local operators related to optimal switching problems: existence and uniqueness. Manuscripta Mathematica 145(3–4), 407–432 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lundström, N.L.P., Olofsson, M., Önskog, T.: Existence, uniqueness and regularity of solutions to systems of nonlocal obstacle problems related to optimal switching. J. Math. Anal. Appl. 475(1), 13–31 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Protter, P.: Stochastic Integration and Differential Equations, vol. 21. Springer, New York (1990)

    Book  MATH  Google Scholar 

  20. Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32(5), 1447–1475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, X.: Backward stochastic viability property with jumps and applications to the comparison theorem for multidimensional BSDEs with jumps. AIP Conf. Proc. 1200, 438–441 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mnif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the paper by Hamadène and Zhao [15], the definition of the viscosity solution of the system (18), is given as follows.

Definition 2

Let \(\mathbf {u}:=(u^i)_{i\in \mathscr {I}}\) be a function of \(C([0,T] \times \mathbb {R}^k ; \mathbb {R}^m)\).

(i) We say that \(\mathbf {u}\) is a viscosity supersolution (resp. subsolution) of (18) if: \(\forall i \in \lbrace 1,\ldots ,m\rbrace \),

$$\begin{aligned}&\text{ a) } \,u^i(T,x) \ge (\text{ resp. } \le )\,\, h_i(x) , \,\,\forall x \in \mathbb {R}^k\,\,; \\&\text{ b) } \text{ if }\,\phi \in \mathcal{C}^{1,2}([0,T] \times \mathbb {R}^k) \text{ is } \text{ such } \text{ that } (t,x) \in [0,T) \times \mathbb {R}^k \text{ a } \text{ local } \text{ minimum }\\&\quad \hbox {(resp. maximum) point of }u^i - \phi \end{aligned}$$

then

$$\begin{aligned}&\min \Big \lbrace u^i(t,x) - \displaystyle \max _{j \in {\mathscr {I}^{-i}}}(u^j(t,x)-g_{ij}(t,x)) ;\\&\quad \quad -\partial _t\phi (t,x) - \mathscr {L}\phi (t,x) - \bar{f}_i(t,x,(u^k(t,x))_{k=1,\ldots ,m},(\sigma ^\top D_x\phi )(t,x), \mathscr {B}_i\phi (t,x))\Big \rbrace \\&\quad \ge \,\,(resp. \le )\,\,0. \end{aligned}$$

(ii) We say that \(\mathbf {u}:=(u^i)_{i\in \mathscr {I}}\) is a viscosity solution of (18) if it is both a supersolution and subsolution of (18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamadène, S., Mnif, M. & Neffati, S. Viscosity Solution of System of Integro-Partial Differential Equations with Interconnected Obstacles of Non-local Type Without Monotonicity Conditions. J Dyn Diff Equat 35, 1151–1173 (2023). https://doi.org/10.1007/s10884-021-09957-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09957-5

Keywords

Navigation