Skip to main content
Log in

Quasi-periodic Solutions for Two Dimensional Modified Boussinesq Equation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, two dimensional modified Boussinesq equation

$$\begin{aligned} u_{tt} +\Delta ^2u+ \Delta ( u^3 ) =0, \quad x\in {\mathbb {T}}^2,~t\in {\mathbb {R}} \end{aligned}$$

under periodic boundary conditions is considered. It is proved that the above equation admits a Whitney smooth family of small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is based on an infinite dimensional KAM theorem and Birkhoff normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi, M., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219, 465–480 (2001)

    Article  Google Scholar 

  2. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Not. 11, 475–497 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5, 629–639 (1995)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J.: Nonlinear Schrödinger Equations. Park City Series, vol. 5. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  6. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton Univ. Press, Princeton (2005)

    Book  Google Scholar 

  7. Boussinesq, M.: Théorie générale des mouvements qui sout propagés dans un canal rectangularire horizontal. C. R. Acad. Sci. Paris 73, 256–260 (1871)

    MATH  Google Scholar 

  8. Boussinesq, M.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pure Appl. Sect. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  9. Boussinesq, M.J.: Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants á l’Académie des Sciences Inst. France 2, 1–680 (1877)

    MATH  Google Scholar 

  10. Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203, 497–513 (2006)

    Article  MathSciNet  Google Scholar 

  11. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MathSciNet  Google Scholar 

  12. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MathSciNet  Google Scholar 

  13. Eliasson, H., Grebert, B., Kuksin, S.B.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26, 1588–1715 (2016)

    Article  MathSciNet  Google Scholar 

  14. Geng, J., You, J.: A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 209, 1–56 (2005)

    Article  Google Scholar 

  15. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys 262, 343–372 (2006)

    Article  MathSciNet  Google Scholar 

  16. Geng, J., You, J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19, 2405–2423 (2006)

    Article  MathSciNet  Google Scholar 

  17. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)

    Article  MathSciNet  Google Scholar 

  18. Geng, J., Zhou, S.: An infinite dimensional KAM theorem with application to two dimensional completely resonant beam equation. J. Math. Phys. 59, 072702 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kuksin, S.B.: Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, vol. 1556. Springer, Berlin (1993)

    Book  Google Scholar 

  20. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MathSciNet  Google Scholar 

  21. Liang, Z., You, J.: Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity. SIAM J. Math. Anal. 36, 1965–1990 (2005)

    Article  MathSciNet  Google Scholar 

  22. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71, 269–296 (1996)

    Article  MathSciNet  Google Scholar 

  24. Shi, Y., Xu, J., Xu, X.: On quasi-periodic solutions for a generalized Boussinesq equation. Nonlinear Anal. 105, 50–61 (2014)

    Article  MathSciNet  Google Scholar 

  25. Tao, L., Wu, J.: The 2D Boussinesq equations with vertical dissipation and linear stability of shear flows. J. Differ. Equ. 267, 1731–1747 (2019)

    Article  MathSciNet  Google Scholar 

  26. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MathSciNet  Google Scholar 

  27. Ye, Z., Xu, X.: Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Differ. Equ. 260, 6716–6744 (2016)

    Article  MathSciNet  Google Scholar 

  28. Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differ. Equ. 230, 213–274 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is partially supported by NSFC Grant (11801492, 61877052, 11701498) and NSFJS Grant (BK 20170472), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 19KJB120014). The second author is supported by the NSFC Grant (11871146).

Appendix

Appendix

For \(w\in \Sigma ,\) we have

$$\begin{aligned} w= \sum \limits _{ n\in {\mathbb {Z}}_{odd}^2 } r_nq_n\varphi _n+r_n{\bar{q}}_n{\bar{\varphi }}_n, \end{aligned}$$

where \( \{ q_n,{\bar{q}}_n \}_{ n\in {\mathbb {Z}}_{odd}^2 }\) are the coordinates of w on the bases \(\{\varphi _n,{\bar{\varphi }}_n \}_{ n\in {\mathbb {Z}}_{odd}^2 } , \) and \(\{r_n\}_{ n\in {\mathbb {Z}}_{odd}^2 } \) are weights with \(r_n=r_{-n}.\) In this appendix, we want to compute the Poisson product \(\{F,G\}\) in the coordinates \( \{ q_n,{\bar{q}}_n \}_{ n\in {\mathbb {Z}}_{odd}^2 }.\) Especially, we choose suitable weights \(\{r_n\}( { n\in {\mathbb {Z}}_{odd}^2 }) \) such that the Poisson product is a standard form. One has

$$\begin{aligned} \int _{{\mathbb {T}}^2} \langle w, \varphi _n \rangle \ dx= & {} \int _{ {\mathbb {T}}^2 } \left\langle \sum \limits _{ n\in {\mathbb {Z}}_{odd}^2 } r_nq_n\varphi _n+r_n{\bar{q}}_n{\bar{\varphi }}_n, \varphi _n \right\rangle \ dx \\= & {} r_n q_{-n} \int _{ {\mathbb {T}}^2 } \langle \varphi _{-n}, \varphi _n \rangle \ dx + r_n{\bar{q}}_n \int _{ {\mathbb {T}}^2 } \langle {\bar{\varphi }}_n , \varphi _n \rangle \ dx \\= & {} r_n q_{-n} \frac{ 1-|n|^2}{ 1+|n|^2 }+ r_n{\bar{q}}_n,\\ \int _{{\mathbb {T}}^2} \langle w, {\bar{\varphi }}_n \rangle \ dx= & {} \int _{ {\mathbb {T}}^2 } \left\langle \sum \limits _{ n\in {\mathbb {Z}}_{odd}^2 } r_nq_n\varphi _n+r_n{\bar{q}}_n{\bar{\varphi }}_n, {\bar{\varphi }}_n \right\rangle \ dx \\= & {} r_n q_n \int _{ {\mathbb {T}}^2 } \langle \varphi _n, {\bar{\varphi }}_n \rangle \ dx + r_n{\bar{q}}_{-n} \int _{ {\mathbb {T}}^2 } \langle {\bar{\varphi }}_{-n} , {\bar{\varphi }} _n \rangle \ dx \\= & {} r_n q_n + r_n{\bar{q}}_{-n} \frac{ 1-|n|^2}{ 1+|n|^2 }. \end{aligned}$$

Let \(A_n= \frac{ 1-|n|^2}{ 1+|n|^2 }, \) then

$$\begin{aligned}&\int _{{\mathbb {T}}^2} \langle w, \varphi _n \rangle \ dx = r_n q_{-n} A_n+ r_n{\bar{q}}_n, \nonumber \\&\int _{{\mathbb {T}}^2} \langle w, \varphi _{-n} \rangle \ dx = r_n q_n A_n+ r_n{\bar{q}}_{-n}, \nonumber \\&\int _{{\mathbb {T}}^2} \langle w, {\bar{\varphi }}_n \rangle \ dx = r_n q_n + r_n{\bar{q}}_{-n} A_n,\nonumber \\&\int _{{\mathbb {T}}^2} \langle w, {\bar{\varphi }}_{-n} \rangle \ dx = r_n q_{-n} + r_n{\bar{q}}_n A_n. \end{aligned}$$
(8.1)

By (8.1), one has

$$\begin{aligned} q_n= & {} \frac{1}{ r_n( A_n^2-1 ) } \left[ \ A_n \int _{{\mathbb {T}}^2} \langle w, \varphi _{-n} \rangle \ dx - \int _{{\mathbb {T}}^2} \langle w, {\bar{\varphi }}_n \rangle \ dx \ \right] ,\\ {\bar{q}}_n= & {} \frac{1}{ r_n( A_n^2-1 ) } \left[ \ A_n \int _{{\mathbb {T}}^2} \langle w, {\bar{\varphi }}_{-n} \rangle \ dx -\int _{{\mathbb {T}}^2} \langle w, \varphi _n \rangle \ dx \ \right] . \end{aligned}$$

Then the Frechet derivatives of \(q_n,{\bar{q}}_n \) with respect to w are

$$\begin{aligned} \frac{ dq_n}{ dw }= & {} \frac{1}{ r_n( A_n^2-1 ) } [ \ A_n \varphi _{-n}- {\bar{\varphi }}_n \ ] ,\\ \frac{ d {\bar{q}}_n }{ dw }= & {} \frac{1}{ r_n( A_n^2-1 ) } [ \ A_n {\bar{\varphi }}_{-n} - \varphi _n \ ]. \end{aligned}$$

Denote by

$$\begin{aligned} {\mathbb {J}}= \begin{pmatrix} 0 &{} (-\Delta )^{\frac{1}{2}}\\ -(-\Delta )^{\frac{1}{2}}&{} 0 \end{pmatrix}. \end{aligned}$$

For \(n,m \in {\mathbb {Z}}_{odd}^2\) we have

$$\begin{aligned} \int _{{\mathbb {T}}^2} \langle \varphi _ n , {\mathbb {J}} {\bar{\varphi }}_m \rangle \ dx= & {} \left\{ \begin{array}{ll} -\frac{ \mathrm{i} 2 |n|^2 }{ 1+|n|^2 } , &{} \quad m=n,\\ &{}\\ 0, &{} \quad m\ne n. \end{array} \right. \\ \int _{{\mathbb {T}}^2} \langle \varphi _ n , {\mathbb {J}} \varphi _m \rangle \ dx= & {} 0, \ \ \ \int _{{\mathbb {T}}^2} \langle {\bar{\varphi }}_ n , {\mathbb {J}} {\bar{\varphi }} _m \rangle \ dx = 0, \end{aligned}$$

then

$$\begin{aligned} \int _{{\mathbb {T}}^2} \left\langle \frac{ dq_n}{ dw } , {\mathbb {J}} \frac{ dq_m}{ dw } \right\rangle \ dx= & {} 0, \quad \int _{{\mathbb {T}}^2} \left\langle \frac{ d {\bar{q}}_n}{ dw } , {\mathbb {J}} \frac{ d {\bar{q}}_m}{ dw } \right\rangle \ dx = 0, \nonumber \\ \int _{{\mathbb {T}}^2} \left\langle \frac{ dq_n}{ dw } , {\mathbb {J}} \frac{ d {\bar{q}}_m}{ dw } \right\rangle \ dx= & {} \left\{ \begin{array}{ll} \frac{ \mathrm{i} 2 |n|^2 }{ r_n^2 \cdot ( 1-A_n^2)( 1+|n|^2 ) } , &{} \quad m=n,\\ 0, &{} \quad m\ne n. \end{array} \right. \end{aligned}$$
(8.2)

We choose \(r_n=r_{-n} =\sqrt{ \frac{ 1+|n|^2 }{2} }\) and then

$$\begin{aligned} \int _{{\mathbb {T}}^2} \left\langle \frac{ dq_n}{ dw } , {\mathbb {J}} \frac{ d {\bar{q}}_m}{ dw } \right\rangle \ dx = \left\{ \begin{array}{ll} \mathrm{i } , &{} \quad m=n,\\ &{}\\ 0, &{} \quad m\ne n. \end{array} \right. \end{aligned}$$
(8.3)

Since

$$\begin{aligned} \nabla F= & {} \frac{ d F}{ dw } = \sum \limits _{ n\in {\mathbb {Z}}_{odd}^2 } \left( \frac{ \partial F}{ \partial q_n } \frac{ d q_n}{ dw } + \frac{ \partial F}{ \partial {\bar{q}}_n } \frac{ d {\bar{q}}_n}{ dw } \right) ,\\ \nabla G= & {} \frac{ d G}{ dw } = \sum \limits _{ n\in {\mathbb {Z}}_{odd}^2 } \left( \frac{ \partial G}{ \partial q_n } \frac{ d q_n}{ dw } + \frac{ \partial G}{ \partial {\bar{q}}_n } \frac{ d {\bar{q}}_n}{ dw } \right) , \end{aligned}$$

and \({\mathbb {J}} \) is anti-self-adjoint, we have

$$\begin{aligned} \{F,G\}= & {} \int _{{\mathbb {T}}^2} \ \nabla F^T {\mathbb {J}} \nabla G \ dx \\= & {} \int _{{\mathbb {T}}^2} \ \left\langle \sum \limits _{ n\in {\mathbb {Z}}_{odd}^2 } \left( \frac{ \partial F}{ \partial q_n } \frac{ d q_n}{ dw } + \frac{ \partial F}{ \partial {\bar{q}}_n } \frac{ d {\bar{q}}_n}{ dw } \right) , {\mathbb {J}} \nabla G \right\rangle \ dx \\= & {} - \sum \limits _{ n\in {\mathbb {Z}}_{odd}^2 } \int _{{\mathbb {T}}^2} \frac{ \partial F}{ \partial q_n } \left\langle \nabla G, {\mathbb {J}} \frac{ d q_n}{ dw } \right\rangle + \frac{ \partial F}{ \partial {\bar{q}}_n } \left\langle \nabla G, {\mathbb {J}} \frac{ d {\bar{q}}_n}{ dw } \right\rangle \ dx. \end{aligned}$$

Inserting the gradient of G,  then

$$\begin{aligned} \{F,G\}= & {} - \sum \limits _{ n,m\in {\mathbb {Z}}_{odd}^2 } \int _{{\mathbb {T}}^2} \frac{ \partial F}{ \partial q_n } \frac{ \partial G}{ \partial q_m } \left\langle \frac{ d q_m}{ dw } ,{\mathbb {J}} \frac{ d q_n}{ dw } \right\rangle \ dx + \frac{ \partial F}{ \partial q_n } \frac{ \partial G}{ \partial {\bar{q}}_m } \left\langle \frac{ d {\bar{q}}_m}{ dw } ,{\mathbb {J}} \frac{ d q_n}{ dw } \right\rangle \ dx \\&+ \frac{ \partial F}{ \partial {\bar{q}}_n } \frac{ \partial G}{ \partial q_m } \left\langle \frac{ d q_m}{ dw } ,{\mathbb {J}} \frac{ d {\bar{q}}_n}{ dw } \right\rangle \ dx + \frac{ \partial F}{ \partial {\bar{q}}_n } \frac{ \partial G}{ \partial {\bar{q}}_m } \left\langle \frac{ d {\bar{q}}_m}{ dw } ,{\mathbb {J}} \frac{ d {\bar{q}}_n}{ dw } \right\rangle \ dx. \end{aligned}$$

By (8.2) and (8.3), we have

$$\begin{aligned} \{F,G\}= \mathrm{i}\sum \limits _{ n \in {\mathbb {Z}}_{odd}^2 } \left( \frac{ \partial F}{ \partial q_n } \frac{ \partial G}{ \partial {\bar{q}}_n} - \frac{ \partial F}{ \partial {\bar{q}}_n } \frac{ \partial G}{ \partial q_n} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Xu, J. Quasi-periodic Solutions for Two Dimensional Modified Boussinesq Equation. J Dyn Diff Equat 33, 741–766 (2021). https://doi.org/10.1007/s10884-020-09829-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09829-4

Keywords

Mathematics Subject Classification

Navigation