Skip to main content
Log in

Bifurcation to Coherent Structures in Nonlocally Coupled Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We show bifurcation of localized spike solutions from spatially constant states in systems of nonlocally coupled equations in the whole space. The main assumptions are a generic bifurcation of saddle-node or transcritical type for spatially constant profiles, and a symmetry and second moment condition on the convolution kernel. The results extend well known results for spots, spikes, and fronts, in locally coupled systems on the real line, and for radially symmetric profiles in higher space dimensions. Rather than relying on center manifolds, we pursue a more direct approach, deriving leading order asymptotics and Newton corrections for error terms. The key ingredient is smoothness of Fourier multipliers arising from discrepancies between nonlocal operators and their local long-wavelength approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, T., Faye, G., Scheel, A., Stauffer, D.: Pinning and unpinning in nonlocal systems. J. Dyn. Differ. Equ. 28(3–4), 897–923 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Toledo-Melero, J.J.: Nonlocal Diffusion Problems, Volume 165 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid (2010)

  4. Bates, P.W.: On some nonlocal evolution equations arising in materials science. In: Nonlinear Dynamics and Evolution Equations, Volume 48 of Fields Inst. Commun., pp. 13–52. American Mathematical Society, Providence, RI (2006)

  5. Bates, P.W., Chen, X., Chmaj, A.: Equilibria and traveling waves for bistable equations with non-local and discrete dissipation. Sūrikaisekikenkyūsho Kōkyūroku, (1178):48–71, (2000). Nonlinear diffusive systems—dynamics and asymptotic analysis (Japanese) (Kyoto, 2000)

  6. Bates, P.W., Lu, K., Zeng, C.: Approximately invariant manifolds and global dynamics of spike states. Invent. Math. 174(2), 355–433 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A 45(3), 033001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bronski, J.C., Hur, V.M., Johnson, M.A.: Modulational instability in equations of KdV type. In: New Approaches to Nonlinear Waves, Volume 908 of Lecture Notes in Phys., pp. 83–133. Springer, Cham (2016)

  9. Cantrell, R.S., Cosner, C., Lou, Y., Ryan, D.: Evolutionary stability of ideal free dispersal strategies: a nonlocal dispersal model. Can. Appl. Math. Q. 20(1), 15–38 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Chicone, C.: Ordinary Differential Equations with Applications, Volume 34 of Texts in Applied Mathematics, 2nd edn. Springer, New York (2006)

  11. Chow, S.N., Hale, J.K.: Methods of bifurcation theory. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), vol. 251. Springer, New York (1982)

  12. Evans, J.W.: Nerve axon equations. I. Linear approximations. Indiana Univ. Math. J., 21:877–885, (1971/1972)

  13. Faye, G., Scheel, A.: Center manifolds without a phase space. Trans. Am. Math. Soc. (to appear). doi:10.1090/tran/7190

  14. Grant, C.P.: Slow motion in one-dimensional Cahn–Morral systems. SIAM J. Math. Anal. 26(1), 21–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haragus, M., Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. Universitext. Springer, London; EDP Sciences, Les Ulis (2011)

  16. Haragus, M., Scheel, A.: Finite-wavelength stability of capillary-gravity solitary waves. Commun. Math. Phys. 225(3), 487–521 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haragus, M., Scheel, A.: Linear stability and instability of ion-acoustic plasma solitary waves. Phys. D 170(1), 13–30 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jourdain, B., Méléard, S., Woyczynski, W.A.: Nonlinear SDEs driven by Lévy processes and related PDEs. ALEA Lat. Am. J Probab. Math. Stat. 4, 1–29 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Kielhöfer, H.: Bifurcation Theory, Volume 156 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2012). An introduction with applications to partial differential equations

  20. Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38(6), 534–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. International Series of Monographs on Physics, vol. 116. The Clarendon Press, Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  22. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. De Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996)

  23. Sandstede, B.: Stability of travelling waves. In: Handbook of Dynamical Systems, Vol. 2, pp. 983–1055. North-Holland, Amsterdam (2002)

  24. Scheel, A.: Radially symmetric patterns of reaction–diffusion systems. Mem. Am. Math. Soc. 165(786), viii+86 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Taylor, J.E., Cahn, J.W.: Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces. Phys. D., 112(3-4):381–411 (1998). With an appendix by Jason Yunger

  26. Wei, J., Winter, M.: Mathematical aspects of pattern formation in biological systems. Applied Mathematical Sciences, vol. 189. Springer, London (2014)

  27. Zelik, S., Mielke, A.: Multi-pulse evolution and space-time chaos in dissipative systems. Mem. Am. Math. Soc. 198(925), vi+97 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A.S. and T.T. gratefully acknowledge support under grant NSF-DMS–1612441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Scheel.

Additional information

Dedicated to the memory of George Sell, mentor, colleague, and friend

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheel, A., Tao, T. Bifurcation to Coherent Structures in Nonlocally Coupled Systems. J Dyn Diff Equat 31, 1107–1127 (2019). https://doi.org/10.1007/s10884-017-9613-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9613-3

Keywords

Navigation