Skip to main content
Log in

Averaging Theory of Arbitrary Order for Piecewise Smooth Differential Systems and Its Application

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The averaging theory for studying periodic orbits of smooth differential systems has a long history. Whereas the averaging theory for piecewise smooth differential systems appeared only in recent years, where the unperturbed systems are smooth. When the unperturbed systems are only piecewise smooth, there is not an existing averaging theory to study existence of periodic orbits of their perturbed systems. Here we establish such a theory for one dimensional perturbed piecewise smooth periodic differential equations. Then we show how to transform planar perturbed piecewise smooth differential systems to one dimensional piecewise smooth periodic differential equations when the unperturbed planar piecewise smooth differential systems have a family of periodic orbits. Finally as application of our theory we study limit cycle bifurcation of planar piecewise differential systems which are perturbation of a \(\Sigma \)-center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bogoliubov, N.N.: On Some Statistical Methods in Mathematical Physics. Izv. vo Akad. Nauk Ukr. SSR, Kiev (1945)

  2. Bogoliubov, N.N., Krylov, N.: The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations. Ukrainian Academy of Science, Kiev (1934). Publ. 8

    Google Scholar 

  3. Brogliato, B.: Nonsmooth Impact Mechanics. Lecture Notes in Control and Information Sciences, Vol. 220, Springer, Berlin (1996)

  4. Buica, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buzzi, C.A., de Carvalho, T., Teixeira, M.A.: Birth of limit cycles bifurcating from a nonsmooth center. J. Math. Pures Appl. 102, 36–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buică, A., Françoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Buzzi, C.A., Medrado, J.C.R., Teixeira, M.A.: Generic bifurcation of refracted systems. Adv. Math. 234, 653–666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  9. Fatou, P.: Sur le mouvement d\(^{\prime }\)un syst\(\grave{a}\)me soumis \(\grave{a}\) des forces \(\grave{a}\) courte p\(\acute{e}\)riode. Bull. Soc. Math. Fr. 56, 98–139 (1928)

    Article  MathSciNet  Google Scholar 

  10. Filippov, A.F.: Differential Equations with Discontinuous Right Hand Sides. Kluwer Academic, Dordrecht (1988)

    Book  MATH  Google Scholar 

  11. Giné, J., Grau, M., Llibre, J.: Averaging theory at any order for computing periodic orbits. Phys. D 250, 58–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giné, J., Llibre, J., Wu, K.S., Zhang, X.: Averaging methods of arbitrary order, periodic solutions and integrability. J. Differ. Equ. 260, 4130–4156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differ. Equ. 248, 2399–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. John, D., Simpson, W.: Bifurcations in Piecewise-Smooth Continuous Systems. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  15. Kunze, M.: Piecewise Smooth Dynamical Systems. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  16. Liang, F., Han, M., Zhang, X.: Bifurcation of limit cycles from generalized homoclinic loops in planar piecewise smooth systems. J. Differ. Equ. 255, 4403–4436 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258, 4007–4032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Llibre, J., Novaes, D.D.: On the continuation of periodic solutions in discontinuous dynamical systems (preprint) (2015)

  19. Llibre, J., Novaes, D.D., Teixeira, M.A.: Higher order averaging theorem for finding periodic solutions via Brouwer degree. Nonlinearity 27, 563–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139, 229–244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pi, D., Yu, J., Zhang, X.: On the sliding bifurcation of a class of planar Filippov systems. Int. J. Bifurc. Chaos 23, 1350040 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pi, D., Zhang, X.: The sliding bifurcations in planar piecewise smooth differential systems. J. Dyn. Differ. Equ. 25, 1001–1026 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pratt, E., Léger, A., Zhang, X.: Study of a transition in the qualitative behavior of a simple oscillator with Coulomb friction. Nonlinear Dyn. 74, 517–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prohens, R., Teruel, A.E.: Canard trajectories in \(3D\) piecewise linear systems. Discret. Contin. Dyn. Syst. A 33, 4595–4611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Teixeira, M.A., da Silva, P.R.: Regularization and singular perturbation techniques for non-smooth systems. Phys. D 241, 1948–1955 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We appreciate the anonymous reviewer for his/her careful reading and the nice comments which are useful in improving our paper. The second author is partially supported by NNSF of China Grant Number 11271252, by RFDP of Higher Education of China grant number 2011007311 0054. Both authors are also supported by innovation program of Shanghai Municipal Education Commission grant 15ZZ012, and by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme, FP7PEOPLE-20120IRSES-316338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Appendix: The Second Order Averaging Function for Planar Piecewise Systems

Appendix: The Second Order Averaging Function for Planar Piecewise Systems

In this appendix we present the formula and its derivation of the associated second order averaging function for the planar piecewise smooth differential system (8).

Continuing the computations given in the proof of Theorem 3, we get

$$\begin{aligned} \begin{aligned} \frac{\partial F_1^\pm (\theta ,r)}{\partial r}&=\frac{g_0^\pm (f_1^\pm )'-f_0^\pm (g_1^\pm )'-(f_0^\pm )'g_1^\pm -f_1^\pm (g_0^\pm )'}{(g_0^\pm )^2}+\frac{2f_0^\pm g_1^\pm (g_0^\pm )'}{(g_0^\pm )^3}\\&=\frac{1}{\big ((\xi _1^\pm )'\eta _1^\pm q_0^\pm -(\xi _2^\pm )'\eta _2^\pm p_0^\pm \big )^2}\Bigg ((\xi ^\pm _1)'(\xi ^\pm _2)'((\eta ^\pm _1)'\eta ^\pm _2-(\eta ^\pm _2)'\eta ^\pm _1)(p_0^\pm q_1^\pm \\&\quad -q_0^\pm p_1^\pm ) -((\xi ^\pm _1)''\xi ^\pm _2\eta ^\pm _1(\eta ^\pm _2)'+(\xi ^\pm _2)''\xi ^\pm _1\eta ^\pm _2(\eta ^\pm _1)')(p_0^\pm q_1^\pm +q_0^\pm p_1^\pm )\\&\quad +2((\xi ^\pm _1)''\xi ^\pm _1\eta ^\pm _1(\eta ^\pm _1)'q_0^\pm q_1^\pm +(\xi ^\pm _2)''\xi ^\pm _2\eta ^\pm _2(\eta ^\pm _2)'p_0^\pm p_1^\pm )+\big (\xi ^\pm _1(\xi ^\pm _2)'(\eta ^\pm _1)'\eta ^\pm _2-\\&\quad (\xi ^\pm _1)'\xi ^\pm _2\eta ^\pm _1(\eta ^\pm _2)'\big )\bigg ((\xi _1^\pm )'\Big (p_0^\pm \frac{\partial q_1^\pm }{\partial x}-q_0^\pm \frac{\partial p_1^\pm }{\partial x}\Big )+(\xi _2^\pm )'\Big (p_0^\pm \frac{\partial q_1^\pm }{\partial y}-q_0^\pm \frac{\partial p_1^\pm }{\partial y}\Big )\bigg )\\&\quad -\big (\xi ^\pm _1(\xi ^\pm _2)'(\eta ^\pm _1)'\eta ^\pm _2+(\xi ^\pm _1)'\xi ^\pm _2\eta ^\pm _1(\eta ^\pm _2)'\big )\bigg ((\xi _1^\pm )'\Big (p_1^\pm \frac{\partial q_0^\pm }{\partial x}+q_1^\pm \frac{\partial p_0^\pm }{\partial x}\Big )\\&\quad +(\xi _2^\pm )'\Big (p_1^\pm \frac{\partial q_0^\pm }{\partial y}+q_1^\pm \frac{\partial p_0^\pm }{\partial y}\Big )\bigg )+2(((\xi ^\pm _1)')^2\xi ^\pm _1\eta ^\pm _1(\eta ^\pm _1)'q_1^\pm \frac{\partial q_0^\pm }{\partial x}\\&\quad +(\xi ^\pm _2)'(\xi ^\pm _1)'\xi ^\pm _2\eta ^\pm _2(\eta ^\pm _2)'p_1^\pm \frac{\partial p_0^\pm }{\partial x})+2((\xi ^\pm _1)'(\xi ^\pm _2)'\xi ^\pm _1\eta ^\pm _1(\eta ^\pm _1)'q_1^\pm \frac{\partial q_0^\pm }{\partial y}+\\&\quad ((\xi ^\pm _2)')^2\xi ^\pm _2\eta ^\pm _2(\eta ^\pm _2)'p_1^\pm \frac{\partial p_0^\pm }{\partial y}) \Bigg )+\frac{1}{\big ((\xi _1^\pm )'\eta _1^\pm q_0^\pm -(\xi _2^\pm )'\eta _2^\pm p_0^\pm \big )^3}\bigg (\big (\xi _2^\pm (\eta _2^\pm )'p_0^\pm \\&\quad -\xi _1^\pm (\eta _1^\pm )'q_0^\pm \big )\big ((\xi _1^\pm )'\eta _1^\pm q_1^\pm -(\xi _2^\pm )'\eta _2^\pm p_1^\pm \big )\Big ((\xi _1^\pm )''\eta _1^\pm q_1^\pm -(\xi _2^\pm )''\eta _2^\pm p_1^\pm \\&\quad +(\xi _1^\pm )'\eta _1^\pm (\xi _1^\pm \frac{\partial q_0^\pm }{\partial x}+\xi _2^\pm \frac{\partial q_0^\pm }{\partial y})-(\xi _2^\pm )'\eta _2^\pm (\xi _1^\pm \frac{\partial p_0^\pm }{\partial x}+\xi _2^\pm \frac{\partial p_0^\pm }{\partial y})\Big )\bigg ), \end{aligned} \end{aligned}$$
(54)

and

$$\begin{aligned} \frac{\partial ^2 F_0^\pm (\theta ,r)}{\partial r^2}= & {} \frac{1}{\big (g_0^\pm \big )^3}\left( (g_0^\pm )^2\frac{\partial ^2}{\partial r^2}f_0^\pm -g_0^\pm f_0^\pm \frac{\partial ^2}{\partial r^2}g_0^\pm -2g_0^\pm \frac{\partial }{\partial r}g_0^\pm \frac{\partial }{\partial r}f_0^\pm +2f_0^\pm (\frac{\partial }{\partial r}g_0^\pm )^2\right) \nonumber \\= & {} \frac{1}{\big ((\xi _1^\pm )'\eta _1^\pm q_0^\pm -(\xi _2^\pm )'\eta _2^\pm p_0^\pm \big )^3}\Bigg (\bigg (\big ((\xi _1^\pm )'\big )^2(\xi _1^\pm )''-2\xi _1^\pm \big ((\xi _1^\pm )''\big )^2\nonumber \\&\quad +\,\xi _1^\pm (\xi _1^\pm )'(\xi _1^\pm )'''\bigg )\big (\eta _1^\pm \big )^2(\eta _1^\pm )'\big (q_0^\pm \big )^3+\bigg (-\big ((\xi _2^\pm )'\big )^2(\xi _2^\pm )''+2\xi _2^\pm \big ((\xi _2^\pm )''\big )^2\nonumber \\&\quad -\,\xi _2^\pm (\xi _2^\pm )'(\xi _2^\pm )'''\bigg )\big (\eta _2^\pm \big )^2(\eta _2^\pm )'\big (p_0^\pm \big )^3+\bigg (\Big (\xi _1^\pm (\xi _2^\pm )'(\xi _2^\pm )'''-(\xi _1^\pm )''((\xi _2^\pm )')^2\nonumber \\&\quad +\,2(\xi _1^\pm )'(\xi _2^\pm )'(\xi _2^\pm )''-2\xi _1^\pm ((\xi _2^\pm )'')^2\Big )(\eta _1^\pm )'(\eta _2^\pm \big )^2+\Big (2(\xi _1^\pm )''((\xi _2^\pm )')^2\nonumber \\&\quad +\,(\xi _1^\pm )'\xi _2^\pm (\xi _2^\pm )'''+(\xi _1^\pm )'''\xi _2^\pm (\xi _2^\pm )'-4(\xi _1^\pm )''\xi _2^\pm (\xi _2^\pm )''\Big )\eta _1^\pm \eta _2^\pm (\eta _2^\pm )'\bigg )(p_0^\pm \big )^2q_0^\pm \nonumber \\&\quad +\,\bigg (\big (-(\xi _1^\pm )'(\xi _1^\pm )'''\xi _2^\pm +((\xi _1^\pm )')^2(\xi _2^\pm )''-2(\xi _1^\pm )'(\xi _1^\pm )''(\xi _2^\pm )'\nonumber \\&\quad +\,2((\xi _1^\pm )'')^2\xi _2^\pm \big )(\eta _1^\pm \big )^2(\eta _2^\pm )'+\big (-2((\xi _1^\pm )')^2(\xi _2^\pm )''-\xi _1^\pm (\xi _1^\pm )'''(\xi _2^\pm )'\nonumber \\&\quad -\,\xi _1^\pm (\xi _1^\pm )'(\xi _2^\pm )'''+4\xi _1^\pm (\xi _1^\pm )''(\xi _2^\pm )''\big )\eta _1^\pm \eta _2^\pm (\eta _2^\pm )'\bigg )(q_0^\pm \big )^2p_0^\pm \nonumber \\&\quad +\,\Bigg (2\big ((\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )' - \xi _1^\pm (\xi _2^\pm )' (\eta _1^\pm )'\eta _2^\pm \big ) \big ((\xi _1^\pm )'\big )^2 (\xi _2^\pm )' \eta _1^\pm \frac{\partial ^2 p_0^\pm }{\partial x\partial y}\nonumber \\&\quad (\xi _1^\pm )'\eta _1^\pm \left( 3\xi _1^\pm (\xi _2^\pm )'(\eta _1^\pm )'\eta _2^\pm -(\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )'\right) \left( (\xi _1^\pm )''\frac{\partial p_0^\pm }{\partial x}-(\xi _2^\pm )''\frac{\partial p_0^\pm }{\partial y}\right) \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\quad +\,(\xi _1^\pm )' \eta _1^\pm \left( (\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )' -\xi _1^\pm (\xi _2^\pm )' (\eta _1^\pm )' \eta _2^\pm \right) \Big (\big ((\xi _1^\pm )'\big )^2\frac{\partial ^2 p_0^\pm }{\partial x^2}\nonumber \\&\quad +\,\big ((\xi _2^\pm )'\big )^2\frac{\partial ^2 p_0^\pm }{\partial y^2} \Big )-2 \xi _1^\pm \big ((\xi _1^\pm )'\big )^2 (\xi _2^\pm )''\eta _1^\pm (\eta _1^\pm )' \eta _2^\pm \frac{\partial p_0^\pm }{\partial x}\nonumber \\&\quad +\,2(\xi _1^\pm )''(\xi _2^\pm )'\eta _1^\pm \Big ( 2\xi _1^\pm (\xi _2^\pm )'(\eta _1^\pm )' \eta _2^\pm -(\xi _1^\pm )'\xi _2^\pm \eta _1^\pm \big (\eta _2^\pm )') \frac{\partial p_0^\pm }{\partial y}\Bigg )(q_0^\pm )^2\nonumber \\&\quad +\,\Bigg (2\Big ( (\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )' - \xi _1^\pm (\xi _2^\pm )' (\eta _1^\pm )' \eta _2^\pm \Big ) (\xi _1^\pm )'\big ((\xi _2^\pm )'\big )^2\eta _2^\pm \frac{\partial ^2 q_0^\pm }{\partial x\partial y}+\nonumber \\&\quad (\xi _2^\pm )'\eta _2^\pm \left( 3(\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )'-\xi _1^\pm (\xi _2^\pm )'(\eta _1^\pm )'\eta _2^\pm \right) \left( (\xi _1^\pm )''\frac{\partial q_0^\pm }{\partial x}-(\xi _2^\pm )''\frac{\partial q_0^\pm }{\partial y}\right) \nonumber \\&\quad +\,2(\xi _1^\pm )'\big ((\xi _2^\pm )'\big )^2\eta _2^\pm \left( \eta _1^\pm (\eta _2^\pm )'-(\eta _1^\pm )'\eta _2^\pm \right) \left( (\xi _1^\pm )'\frac{\partial q_0^\pm }{\partial x}+(\xi _2^\pm )'\frac{\partial q_0^\pm }{\partial y}\right) \nonumber \\&\quad +\,(\xi _2^\pm )' \eta _2^\pm \left( (\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )' -\xi _1^\pm (\xi _2^\pm )' (\eta _1^\pm )' \eta _2^\pm \right) \Big (\big ((\xi _1^\pm )'\big )^2\frac{\partial ^2 q_0^\pm }{\partial x^2} \nonumber \\&\quad +\,\big ((\xi _2^\pm )'\big )^2\frac{\partial ^2 q_0^\pm }{\partial y^2} \Big )+2(\xi _1^\pm )'(\xi _2^\pm )'' \eta _2^\pm \Big ( \xi _1^\pm (\xi _2^\pm )' (\eta _1^\pm )'\eta _2^\pm \nonumber \\&\quad -\,2 (\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )' \Big ) \frac{\partial q_0^\pm }{\partial x} +2(\xi _1^\pm )''\xi _2^\pm \big ((\xi _2^\pm )'\big )^2\eta _1^\pm \eta _2^\pm (\eta _2^\pm )' \frac{\partial q_0^\pm }{\partial y}\Bigg )(p_0^\pm )^2 \end{aligned}$$
$$\begin{aligned}&\quad +\,\Bigg ((\xi _2^\pm )'\Big ( \xi _1^\pm (\xi _2^\pm )' (\eta _1^\pm )'(\eta _2^\pm )^2 -(\xi _1^\pm )'\xi _2^\pm \eta _1^\pm (\eta _2^\pm )' \eta _2^\pm \Big )\\&\qquad \qquad \times \,\left( \big ((\xi _2^\pm )'\big )^2 \frac{\partial ^2 p_0^\pm }{\partial y^2}+\big ((\xi _1^\pm )'\big )^2 \frac{\partial ^2 p_0^\pm }{\partial x^2}\right) \\&\quad +\,(\xi _1^\pm )'\Big (\xi _1^\pm (\xi _2^\pm )' \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm - (\xi _1^\pm )'\xi _2^\pm (\eta _1^\pm )^2(\eta _2^\pm )' \Big )\\&\qquad \qquad \times \,\left( \big ((\xi _1^\pm )'\big )^2 \frac{\partial ^2 q_0^\pm }{\partial x^2}+\big ((\xi _2^\pm )'\big )^2 \frac{\partial ^2 q_0^\pm }{\partial y^2}\right) \\&\quad +\,2\Big ( \xi _1^\pm (\xi _2^\pm )' (\eta _1^\pm )' \eta _2^\pm - (\xi _1^\pm )' \xi _2^\pm \eta _1^\pm (\eta _2^\pm )' \Big ) \big ((\xi _1^\pm )'\big )^2 (\xi _2^\pm )'\eta _1^\pm \frac{\partial ^2 q_0^\pm }{\partial x\partial y}\\&\quad +\,2\Big ( \xi _1^\pm (\xi _2^\pm )'(\eta _1^\pm )' \eta _2^\pm - (\xi _1^\pm )' \xi _2^\pm \eta _1^\pm (\eta _2^\pm )' \Big )(\xi _1^\pm )'\big ((\xi _2^\pm )'\big )^2\eta _2^\pm \frac{\partial ^2 p_0^\pm }{\partial x\partial y}\\&\quad +\,\Big (2 \big ((\xi _1^\pm )'\big )^3(\xi _2^\pm )' \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm \\&\quad -\,3 \xi _1^\pm (\xi _1^\pm )' (\xi _1^\pm )'' (\xi _2^\pm )' \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm +2 \xi _1^\pm \big ((\xi _1^\pm )'\big )^2(\xi _2^\pm )'' \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm \\&\quad +\,2 \big ((\xi _1^\pm )'\big )^3 (\xi _2^\pm )'(\eta _1^\pm )^2 (\eta _2^\pm )'+\big ((\xi _1^\pm )'\big )^2 (\xi _1^\pm )'' \xi _2^\pm (\eta _1^\pm )^2 (\eta _2^\pm )'\Big ) \frac{\partial q_0^\pm }{\partial x}\\&\quad +\,\Big (3 \xi _1^\pm (\xi _1^\pm )'(\xi _2^\pm )'(\xi _2^\pm )'' \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm +2 \big ((\xi _1^\pm )'\big )^2\big ((\xi _2^\pm )'\big )^2 \eta _1^\pm (\eta _1^\pm )'\eta _2^\pm \\&\quad +\,2 (\xi _1^\pm )' (\xi _1^\pm )''\xi _2^\pm (\xi _2^\pm )' (\eta _1^\pm )^2 (\eta _2^\pm )' -4 \xi _1^\pm (\xi _1^\pm )''\big ((\xi _2^\pm )'\big )^2 \eta _1^\pm \eta _2^\pm \\&\quad -\,2 \big ((\xi _1^\pm )'\big )^2 \big ((\xi _2^\pm )'\big )^2(\eta _1^\pm )^2 (\eta _2^\pm )'-\big ((\xi _1^\pm )'\big )^2 \xi _2^\pm (\xi _2^\pm )''(\eta _1^\pm )^2 (\eta _2^\pm )' \Big ) \frac{\partial q_0^\pm }{\partial y}\\&\quad +\,\Big (-2 \xi _1^\pm (\xi _1^\pm )'(\xi _2^\pm )' (\xi _2^\pm )''(\eta _1^\pm )' (\eta _2^\pm )^2 -3(\xi _1^\pm )'(\xi _1^\pm )''\xi _2^\pm (\xi _2^\pm )' \eta _1^\pm \eta _2^\pm (\eta _2^\pm )'\\ \end{aligned}$$
$$\begin{aligned}&\quad -\,2 \big ((\xi _1^\pm )'\big )^2\big ((\xi _2^\pm )'\big )^2 \eta _1^\pm \eta _2^\pm (\eta _2^\pm )'+4 \big ((\xi _1^\pm )'\big )^2\xi _2^\pm (\xi _2^\pm )''\eta _1^\pm \eta _2^\pm (\eta _2^\pm )' \\&\quad +\,\xi _1^\pm (\xi _1^\pm )''\big ((\xi _2^\pm )'\big )^2 (\eta _1^\pm )' (\eta _2^\pm )^2 +2 \big ((\xi _1^\pm )'\big )^2 \big ((\xi _2^\pm )'\big )^2 (\eta _1^\pm )'(\eta _2^\pm )^2 \Big ) \frac{\partial p_0^\pm }{\partial x}\\&\quad +\,\Big (-2 (\xi _1^\pm )' \big ((\xi _2^\pm )'\big )^3\eta _1^\pm \eta _2^\pm (\eta _2^\pm )'-2 (\xi _1^\pm )''\xi _2^\pm \big ((\xi _2^\pm )'\big )^2 \eta _1^\pm \eta _2^\pm (\eta _2^\pm )'\\&\quad -\,\xi _1^\pm \big ((\xi _2^\pm )'\big )^2 (\xi _2^\pm )''(\eta _1^\pm )' (\eta _2^\pm )^2+3 (\xi _1^\pm )'\xi _2^\pm (\xi _2^\pm )' (\xi _2^\pm )'' \eta _1^\pm \eta _2^\pm (\eta _2^\pm )' \\&\quad +\,2 (\xi _1^\pm )'\big ((\xi _2^\pm )'\big )^3 (\eta _1^\pm )' (\eta _2^\pm )^2 \Big ) \frac{\partial p_0^\pm }{\partial y}\Bigg )p_0^\pm q_0^\pm \\&\quad +\,\Bigg (\Big (-2 \xi _1^\pm \big ((\xi _2^\pm )'\big )^4 (\eta _1^\pm )' (\eta _2^\pm )^2+2 (\xi _1^\pm )' \xi _2^\pm \big ((\xi _2^\pm )'\big )^3 \eta _1^\pm \eta _2^\pm (\eta _2^\pm )'\Big ) \left( \frac{\partial p_0^\pm }{\partial y}\right) ^2\\&\quad +\,2\Big ( (\xi _1^\pm )' \xi _2^\pm (\xi _2^\pm )' \eta _1^\pm \eta _2^\pm (\eta _2^\pm )' -2 \xi _1^\pm \big ((\xi _2^\pm )'\big )^2 (\eta _1^\pm )' (\eta _2^\pm )^2 \Big )\big ((\xi _1^\pm )'\big )^2 \left( \frac{\partial p_0^\pm }{\partial x}\right) ^2\\&\quad +\,4\Big ( \big ((\xi _1^\pm )'\big )^2\xi _2^\pm \big ((\xi _2^\pm )'\big )^2\eta _1^\pm \eta _2^\pm (\eta _2^\pm )' - \xi _1^\pm (\xi _1^\pm )'\big ((\xi _2^\pm )'\big )^3 (\eta _1^\pm )' (\eta _2^\pm )^2 \Big ) \frac{\partial p_0^\pm }{\partial y} \frac{\partial p_0^\pm }{\partial x}\\&\quad +\,2\Big ( \xi _1^\pm \big ((\xi _1^\pm )'\big )^2 \big ((\xi _2^\pm )'\big )^2 \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm - \big ((\xi _1^\pm )'\big )^3 \xi _2^\pm (\xi _2^\pm )' (\eta _1^\pm )^2(\eta _2^\pm )' \Big ) \frac{\partial q_0^\pm }{\partial x} \frac{\partial p_0^\pm }{\partial y} \end{aligned}$$
$$\begin{aligned}&\quad +\,2\Big ( \xi _1^\pm \big ((\xi _1^\pm )'\big )^2\big ((\xi _2^\pm )'\big )^2 \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm -\big ((\xi _1^\pm )'\big )^3 \xi _2^\pm (\xi _2^\pm )' (\eta _1^\pm )^2(\eta _2^\pm )' \Big ) \frac{\partial q_0^\pm }{\partial y} \frac{\partial p_0^\pm }{\partial x}\nonumber \\&\quad +\,2\Big (- \big ((\xi _1^\pm )'\big )^2\xi _2^\pm (\eta _1^\pm )^2 (\eta _2^\pm )' + \xi _1^\pm (\xi _1^\pm )'(\xi _2^\pm )' \eta _1^\pm (\eta _1^\pm )' \eta _2^\pm \Big )\big ((\xi _2^\pm )'\big )^2 \frac{\partial q_0^\pm }{\partial y} \frac{\partial p_0^\pm }{\partial y}\nonumber \\&\quad +\,2\Big (- \big ((\xi _1^\pm )'\big )^4 \xi _2^\pm (\eta _1^\pm )^2(\eta _2^\pm )' +2 \xi _1^\pm \big ((\xi _1^\pm )'\big )^3(\xi _2^\pm )' \eta _1^\pm (\eta _1^\pm )'\eta _2^\pm \Big ) \frac{\partial q_0^\pm }{\partial x} \frac{\partial p_0^\pm }{\partial x}\Bigg )q_0^\pm \nonumber \\&\quad +\,\Bigg (2\Big ( (\xi _1^\pm )'\xi _2^\pm (\eta _1^\pm )^2(\eta _2^\pm )' -\xi _1^\pm (\xi _2^\pm )'\eta _1^\pm (\eta _1^\pm )' \eta _2^\pm \Big ) \big ((\xi _1^\pm )'\big )^3\left( \frac{\partial q_0^\pm }{\partial x}\right) ^2\nonumber \\&\quad +\,2\Big ( \big ((\xi _1^\pm )'\big )^2\xi _2^\pm (\eta _1^\pm )^2 (\eta _2^\pm )' - \xi _1^\pm (\xi _1^\pm )' (\xi _2^\pm )' \eta _1^\pm (\eta _1^\pm )'\eta _2^\pm \Big )\big ((\xi _2^\pm )'\big )^2 \left( \frac{\partial q_0^\pm }{\partial y}\right) ^2\nonumber \\&\quad +\,2\Big (- \big ((\xi _1^\pm )'\big )^2\xi _2^\pm \eta _1^\pm \eta _2^\pm (\eta _2^\pm )' + \xi _1^\pm (\xi _1^\pm )'(\xi _2^\pm )'(\eta _1^\pm )' (\eta _2^\pm )^2 \Big ) \big ((\xi _2^\pm )'\big )^2\frac{\partial q_0^\pm }{\partial x} \frac{\partial p_0^\pm }{\partial y}\nonumber \\&\quad +\,2\Big (- \big ((\xi _1^\pm )'\big )^2\xi _2^\pm \eta _1^\pm \eta _2^\pm (\eta _2^\pm )'+ \xi _1^\pm (\xi _1^\pm )'(\xi _2^\pm )'(\eta _1^\pm )' (\eta _2^\pm )^2 \Big ) \big ((\xi _2^\pm )'\big )^2\frac{\partial q_0^\pm }{\partial y} \frac{\partial p_0^\pm }{\partial x}\nonumber \\&\quad +\,2\Big (- (\xi _1^\pm )' \xi _2^\pm \eta _1^\pm \eta _2^\pm (\eta _2^\pm )' + \xi _1^\pm (\eta _1^\pm )' (\xi _2^\pm )' (\eta _2^\pm )^2\Big ) \big ((\xi _2^\pm )'\big )^3\frac{\partial q_0^\pm }{\partial y} \frac{\partial p_0^\pm }{\partial y}\nonumber \\&\quad +\,2\Big ( \xi _1^\pm \big ((\xi _2^\pm )'\big )^2 (\eta _1^\pm )' (\eta _2^\pm )^2 - (\xi _1^\pm )' \xi _2^\pm (\xi _2^\pm )' \eta _1^\pm \eta _2^\pm (\eta _2^\pm )' \Big ) \big ((\xi _1^\pm )'\big )^2\frac{\partial q_0^\pm }{\partial x} \frac{\partial p_0^\pm }{\partial x}\nonumber \\&\quad +\,4\Big ( (\xi _1^\pm )'\xi _2^\pm (\eta _1^\pm )^2 (\eta _2^\pm )' - \xi _1^\pm (\xi _2^\pm )' \eta _1^\pm (\eta _1^\pm )'\eta _2^\pm \Big ) (\xi _2^\pm )'\big ((\xi _1^\pm )'\big )^2\frac{\partial q_0^\pm }{\partial y} \frac{\partial q_0^\pm }{\partial x}\Bigg )p_0^\pm . \end{aligned}$$
(55)

Set

$$\begin{aligned} v_1^1(\theta ,z) =&\int _0^\theta \frac{(-\widetilde{p}_1^+ \widetilde{q}_0^++\widetilde{p}_0^+ \widetilde{q}_1^+)}{\frac{\partial r_0^+(\theta ,z)}{\partial z}\Big ((\xi _1^+)'(r_0^+)\eta _1^+ \widetilde{q}_0^+-(\xi _2^+)'(r_0^+)\eta _2^+ \widetilde{p}_0^+\Big )^2}\\&\times \Big (\xi _1^+(r_0^+)(\xi _2^+)'(r_0^+)(\eta _1^+)'\eta _2^+-(\xi _1^+)' (r_0^+)\xi _2^+(r_0^+)\eta _1^+(\eta _2^+)'\Big )d\theta ,\\&v_1^2(\theta ,z)\\ =&v_1^1(\pi ,z)+\int _\pi ^{\theta }\frac{(-\widetilde{p}_1^- \widetilde{q}_0^-+\widetilde{p}_0^- \widetilde{q}_1^-)}{\frac{\partial r_0^-(\theta ,z)}{\partial z}\Big ((\xi _1^-)'(r_0^-)\eta _1^- \widetilde{q}_0^--(\xi _2^-)'(r_0^-)\eta _2^- \widetilde{p}_0^-\Big )^2}\\&\times \Big (\xi _1^-(\xi _2^-)'(\eta _1^-)'(r_0^-)\eta _2(r_0^-(\theta ,z)) -(\xi _1^-)'(r_0^-)\xi _2^-(r_0^-)\eta _1^-(\eta _2^-)'\Big )d\theta . \end{aligned}$$

From the expression (6), we have

$$\begin{aligned} \begin{aligned} H_2(z)&=\displaystyle \int \limits _0^{\pi }\frac{1}{\frac{\partial r_0^+(s,z)}{\partial z}}\left( F^+_2(s,r^+_0(s,z))+\frac{\partial F^+_1}{\partial r}(s,r^+_0(s,z))r^+_1(s,z)\right. \\ \quad&\qquad \qquad \qquad \qquad \left. +\frac{1}{2}\frac{\partial ^2 F^+_0}{\partial r^2}(s,x_0(s,z))(r^+_1(s,z))^2\right) ds\\&\qquad +\displaystyle \int \limits _\pi ^{2\pi }\frac{1}{\frac{\partial r_0^-(s,z)}{\partial z}}\left( F^-_2(s,r^-_0(s,z))+\frac{\partial F^-_1}{\partial r}(s,r^-_0(s,z))r^-_1(s,z)\right. \\ \quad&\qquad \qquad \qquad \qquad \left. +\frac{1}{2}\frac{\partial ^2 F^-_0}{\partial r^2}(s,x_0(s,z))(r^-_1(s,z))^2\right) ds\\&= \displaystyle \int \limits _0^{\pi }\left( \frac{F^+_2(s,r^+_0(s,z))}{\frac{\partial r_0^+(s,z)}{\partial z}}+\frac{\partial F^+_1}{\partial r}(s,r^+_0(s,z))v^1_1(\theta ,z)\right. \\ \quad&\qquad \qquad \qquad \left. +\frac{1}{2}\frac{\partial ^2 F^+_0}{\partial r^2}(s,x_0(s,z))(v^1_1(\theta ,z))^2\frac{\partial r_0^+(s,z)}{\partial z}\right) ds\\&\qquad \displaystyle \int \limits _\pi ^{2\pi }\left( \frac{F^-_2(s,r^-_0(s,z))}{\frac{\partial r_0^-(s,z)}{\partial z}}+\frac{\partial F^-_1}{\partial r}(s,r^-_0(s,z))v^1_2(\theta ,z)\right. \\ \quad&\qquad \qquad \qquad \left. +\frac{1}{2}\frac{\partial ^2 F^-_0}{\partial r^2}(s,x_0(s,z))(v^2_1(\theta ,z))^2\frac{\partial r_0^-(s,z)}{\partial z}\right) ds \end{aligned} \end{aligned}$$
(56)

Substituting (29) and (54)–(55) into (56), we can obtain the second order averaging function \(H_2(z)\). As we have seen, the concrete expression of \(H_2(z)\) will be much involved, and it is omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Zhang, X. Averaging Theory of Arbitrary Order for Piecewise Smooth Differential Systems and Its Application. J Dyn Diff Equat 30, 55–79 (2018). https://doi.org/10.1007/s10884-016-9534-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-016-9534-6

Keywords

Mathematics Subject Classification

Navigation