Skip to main content
Log in

Adjoint Pairs of Differential-Algebraic Equations and Their Lyapunov Exponents

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is devoted to the analysis of adjoint pairs of regular differential-algebraic equations with arbitrarily high tractability index. We consider both standard form DAEs and DAEs with properly involved derivative. We introduce the notion of factorization-adjoint pairs and show their common structure including index and characteristic values. We precisely describe the relations between the so-called inherent explicit regular ODE (IERODE) and the essential underlying ODEs (EUODEs) of a regular DAE. We prove that among the EUODEs of an adjoint pair of regular DAEs there are always those which are adjoint to each other. Moreover, we extend the Lyapunov exponent theory to DAEs with arbitrarily high index and establish the general class of DAEs being regular in Lyapunov’s sense. The Perron identity which is well known in the ODE theory does not hold in general for adjoint pairs of Lyapunov regular DAEs. We establish criteria for the Perron identity to be valid. Examples are also given for illustrating the new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In contrast, when looking for adjoint operators of the operator representing the given ODE, one supposes a compact interval and, additionally, boundary conditions.

  2. In functional-analytic terms, the operator representing the DAE (13) with properly stated leading term is the closure of operator of the standard DAE (9).

  3. Correspondingly, the operator L representing a linear DAE on a compact interval \({\mathcal {I}}\) does not at all depend on the special proper factorization of the leading term, and the same is true for the adjoint operator \(L^{*}\), [26].

Abbreviations

\({\mathbb {K}}\) :

Set of real numbers \({\mathbb {R}}\) and set of complex numbers \({\mathbb {C}}\)

\({\mathcal {L}}({\mathbb {K}}^s,{\mathbb {K}}^n)\) :

Set of \({\mathbb {K}}\)-valued \(n\times s \)—matrices and linear operators from \({\mathbb {K}}^s\) to \({\mathbb {K}}^n\)

\({\mathcal {C}}({\mathcal {I}}, X)\) :

Space of continuous functions mapping \({\mathcal {I}}\) into X

\({\mathcal {C}}^1({\mathcal {I}}, X)\) :

Space of continuously differentiable functions mapping \({\mathcal {I}}\) into X

\({\mathcal {C}}^1_M({\mathcal {I}}, X)\) :

\(\{x\in {\mathcal {C}}({\mathcal {I}}, X):Mx\in {\mathcal {C}}^1({\mathcal {I}}, Y)\), with \(M\in {\mathcal {L}}(X,Y)\}\)

\(K^*\) :

Adjoint matrix

\(K^-\) :

Generalized inverse, \(KK^-K=K\), \(K^-KK^-=K^-\)

\(K^+\) :

Moore–Penrose inverse

\(K^{*\,-}\) :

\([K^{*}]^{-}\)

\(K^{-\,*}\) :

\([K^{-}]^{*}\)

\(K^{-\,*\,-}\) :

\([[K^{-}]^{*}]^{-}\)

\(\mathrm{ker}\,K\) :

Nullspace (kernel) of K

\(\mathrm{im}\,K\) :

Image (range) of K

\(\langle \cdot ,\cdot \rangle \) :

Scalar product in \({\mathbb {K}}^m\)

\((\cdot ,\cdot )\) :

Scalar product in function spaces

\(|\cdot |\) :

Vector and matrix norms

\(\Vert \cdot \Vert \) :

Norms on function spaces, operator norms

\(\oplus \) :

Direct sum

\(\chi ^u(f)\) :

The upper Lyapunov characteristic exponent of f

\(\chi ^l(f)\) :

The lower Lyapunov characteristic exponent of f

DAE:

Differential-algebraic equation

ODE:

Ordinary differential equation

IVP:

Initial value problem

IERODE:

Inherent explicit regular ODE

EUODE:

Essential underlying ODE

References

  1. Adrianova, L.Ya.: Introduction to Linear Systems of Differential Equations. Translations ofMathematical Monographs, vol. 146. AMS, Providence (1995)

  2. Amann, J.H.: Gewöhnliche Differentialgleichungen. Walter de Gruyter, Berlin (1983)

    MATH  Google Scholar 

  3. Ascher, U.M., Petzold, L.R.: Stability of computational methods for constrained dynamics systems. SIAM J. Sci. Comput. 14(1), 95–120 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balla, K.: Differential algebraic equations and their adjoints. Dissertation, Doctor of the Hungarian Academy of Sciences. Hungarian Academy of Sciences, Budapest (2004)

  5. Balla, K., März, R.: Transfer of boundary conditions for DAEs of index 1. SIAM J. Numer. Anal. 33(6), 2318–2332 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balla, K., März, R.: Linear differential algebraic equations of index 1 and their adjoint equations. Result Math. 37(1), 13–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balla, K., März, R.: A unified approach to linear differential algebraic equations and their adjoints. Z. Anal. Anwend. 21(3), 783–802 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balla, K., März, R.: Linear boundary value problems for differential-algebraic equations. Miscolc Math. Notes 5(1), 3–18 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Balla, K., Linh, V.H.: Adjoint pairs of differential-algebraic equations and Hamiltonian systems. Appl. Numer. Math. 53, 131–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balla, K., Kurina, G., März, R.: Index criteria for differential algebraic equations arising from linear-quadratic optimal control problems. J. Dyn. Control Syst. 12(3), 289–311 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Campbell, S.L., Nichols, N.K., Terell, W.I.: Duality, observability, and controllability for linear time-varying descriptor systems. Circuits Syst. Signal Process. 10(4), 455–470 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, Y., Li, S.T., Petzold, L.R., Serban, R.: Adjoint sensitivity analysis for differential-algebraic equations: the adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24(3), 1076–1089 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw Hill, New York (1955)

    MATH  Google Scholar 

  14. Cong, N.D., Nam, H.: Lyapunov’s inequality for linear differential algebraic equation. Acta Math. Vietnam. 28, 73–88 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Cong, N.D., Nam, H.: Lyapunov regularity of linear differential algebraic equations of index 1. Acta Math. Vietnam. 29, 1–21 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Cronin, J.: Differential Equations. Introduction and Qualitative Theory. Marcel Dekker Inc, New York (1980)

    MATH  Google Scholar 

  17. Gajshun, I.V.: Vvedenie v Teoriyu Linejnykh Nestatsionarnykh Sistem. Institut matematiki NAN Belarusi, Minsk (1999) (in Russian)

  18. Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Texte zur Mathematik No. 88. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1986)

  19. Hanke, M.: Linear differential-algebraic equations in spaces of integrable functions. J. Differ. Equ. 79, 14–30 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kunkel, P., Mehrmann, V.: Formal adjoints of linear DAE operators and their role in optimal control. Electron. J. Linear Algebr. 22, 672–693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum (Series Editors: Ilchman, A., Reis, T.). Springer-Verlag, Berlin (2013)

  22. Linh, V.H., Mehrmann, V.: Lyapunov, Bohl, and Sacker–Sell spectral intervals for differential-algebraic equations. J. Dyn. Differ. Equ. 21, 153–194 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Linh, V.H., Mehrmann, V.: Spectra and leading directions for differential-algebraic equations, spectra and leading directions for differential-algebraic equations. In: Biegler, L.T., Campbell, S.L., Mehrmann, V. (eds.) Control and Optimization with Differential-Algebraic Constraints, pp. 59–78. SIAM, Philadelphia (2012)

    Chapter  Google Scholar 

  24. Linh, V.H., Mehrmann, V., Van Vleck, E.: QR methods and error analysis for computing Lyapunov and Sacker–Sell spectral intervals for linear differential-algebraic equations. Adv. Comput. Math. 35, 281–322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lyapunov, A.M.: The general problem of the stability of motion. Translated by A. T. Fuller from Edouard Davaux’s French translation: of the 1892 Russian original . Int. J. Control 55, 521–790, 1992 (1907)

  26. März, R.: Differential-algebraic equations from a functional-analytic viewpoint: a survey. Technical report, Humboldt-University Berlin, Institute of Mathematics, Berlin (2014)

  27. Petry, T.: Realisierung des Newton–Kantorovich–Verfahrens für nichtlineare Algebro-Differentialgleichungen mittels Abramov.Tranfer. PhD thesis, Humboldt-Universität zu Berlin, Math.-Nat. Fakultät II. Logos Verlag, Berlin (1998)

  28. Petry, T.: On the stability of the Abramov transfer for differential-algebraic equations of index 1. SIAM J. Numer. Anal. 35(1), 201–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank an anonymous referee who read the manuscript very carefully and gave useful comments that led to the improvement of the paper. V.H. Linh’s research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) Project 101.02-2014.05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Hoang Linh.

Additional information

Dedicated to the memory of Katalin Balla (1947–2005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linh, V.H., März, R. Adjoint Pairs of Differential-Algebraic Equations and Their Lyapunov Exponents. J Dyn Diff Equat 29, 655–684 (2017). https://doi.org/10.1007/s10884-015-9474-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9474-6

Keywords

Mathematics Subject Classification

Navigation