Skip to main content
Log in

Travelling Waves for Complete Discretizations of Reaction Diffusion Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we consider the impact that full spatial–temporal discretizations of reaction–diffusion systems have on the existence and uniqueness of travelling waves. In particular, we consider a standard second-difference spatial discretization of the Laplacian together with the six numerically stable backward differentiation formula methods for the temporal discretization. For small temporal time-steps and a fixed spatial grid-size, we establish some useful Fredholm properties for the operator that arises after linearizing the system around a travelling wave. In particular, we perform a singular perturbation argument to lift these properties from the natural limiting operator. This limiting operator is associated to a lattice differential equation, where space has been discretized but time remains continuous. For the backward-Euler temporal discretization, we also obtain travelling waves for arbitrary time-steps. In addition, we show that in the anti-continuum limit, in which the temporal time-step and the spatial grid-size are both very large, wave speeds are no longer unique. This is in contrast to the situation for the original continuous system and its spatial semi-discretization. This non-uniqueness is also explored numerically and discussed extensively away from the anti-continuum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bates, P.W., Chen, X., Chmaj, A.: Traveling waves of bistable dynamics on a lattice. SIAM J. Numer. Anal. 35, 520–546 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54, 181–190 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10(5), 1038–1051 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cahn, J.W., Mallet-Paret, J., Van Vleck, E.S.: Traveling wave solutions for systems of ODE’s on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59, 455–493 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Chow, S.N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149, 248–291 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diekmann, O., van Gils, S.A., Verduyn-Lunel, S.M., Walther, H.O.: Delay Equations. Springer, New York (1995)

    Book  MATH  Google Scholar 

  7. Elmer, C.E., Van Vleck, E.S.: A variant of Newton’s method for the computation of traveling waves of bistable differential-difference equations. J. Dyn. Differ. Eq. 14, 493–517 (2002)

    Article  MATH  Google Scholar 

  8. Elmer, C.E., Van Vleck, E.S.: Anisotropy, propagation failure, and wave speedup in traveling waves of discretizations of a Nagumo PDE. J. Comput. Phys. 185(2), 562–582 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elmer, C.E., Van Vleck, E.S.: Existence of monotone traveling fronts for BDF discretizations of bistable reaction-diffusion equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10(1–3), 389–402 (2003). Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems (London, ON, 2001)

  10. Elmer, C.E., Van Vleck, E.S.: Dynamics of monotone travelling fronts for discretizations of Nagumo PDEs. Nonlinearity 18, 1605–1628 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Elmer, C.E., Van Vleck, E.S.: Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math. 65, 1153–1174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Vol. 194 of Graduate Texts in Mathematics. Springer, New York. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt (2000)

  13. Grüne, L.: Attraction rates, robustness, and discretization of attractors. SIAM J. Numer. Anal. 41(6), 2096–2113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Vol. 14 of Springer Series in Computational Mathematics. Springer, Berlin. Stiff and differential-algebraic problems (1991)

  15. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I, Vol. 8 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin. Nonstiff problems (1993)

  16. Härterich, J., Sandstede, B., Scheel, A.: Exponential dichotomies for linear non-autonomous functional differential equations of mixed type. Indiana Univ. Math. J. 51, 1081–1109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hindmarsh, A.C.: LSODE and LSODI, two new initial value ordinary differential equation solvers. SIGNUM Newsl. 15(4), 10–11 (1980)

    Article  Google Scholar 

  18. Hoffman, A., Hupkes, H.J., Van Vleck, E.S.: Entire Solutions for Bistable Lattice Differential Equations with Obstacles. Memoirs of the AMS (to appear)

  19. Hoffman, A., Hupkes, H.J., Van Vleck, E.S.: Multi-Dimensional Stability of Waves Travelling through Rectangular Lattices in Rational Directions. Transactions of the AMS (to appear)

  20. Hoffman, A., Mallet-Paret, J.: Universality of crystallographic pinning. J. Dyn. Differ. Equ. 22, 79–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hupkes, H.J., Sandstede, B.: Stability of pulse solutions for the discrete FitzHugh–Nagumo system. Trans. AMS 365, 251–301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hupkes, H.J., Van Vleck, E.S.: Negative diffusion and traveling waves in high dimensional lattice systems. SIAM J. Math. Anal. 45(3), 1068–1135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hupkes, H.J., Verduyn-Lunel, S.M.: Analysis of Newton’s method to compute travelling waves in discrete media. J. Dyn. Differ. Equ. 17, 523–572 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hupkes, H.J., Verduyn-Lunel, S.M.: Center manifolds for periodic functional differential equations of mixed type. J. Differ. Equ. 245, 1526–1565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. King, J.R., Chapman, S.J.: Asymptotics beyond all orders and Stokes lines in nonlinear differential-difference equations. Eur. J. Appl. Math. 12(4), 433–463 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Laplante, J.P., Erneux, T.: Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem. 96, 4931–4934 (1992)

    Article  Google Scholar 

  28. Mallet-Paret, J.: The Fredholm alternative for functional differential equations of mixed type. J. Dyn. Differ. Equ. 11, 1–48 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11, 49–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mallet-Paret, J.: Crystallographic Pinning: Direction Dependent Pinning in Lattice Differential Equations. Preprint (2001)

  31. Mallet-Paret, J., Verduyn-Lunel, S.M.: Exponential Dichotomies and Wiener-Hopf Factorizations for Mixed-Type Functional Differential Equations. J. Differ. Equ. (to appear)

  32. Nolen, J., Roquejoffre, J.-M., Ryzhik, L., Zlatoš, A.: Existence and non-existence of Fisher-KPP transition fronts. Arch. Ration. Mech. Anal. 203(1), 217–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Petzold, L.R.: A description of DASSL: a differential/algebraic system solver. In: Scientific Computing (Montreal, Que., 1982), IMACS Transactions on Scientific Computation, I, pp. 65–68. IMACS, New Brunswick, NJ (1983)

  34. Rustichini, A.: Functional differential equations of mixed type: the linear autonomous case. J. Dyn. Differ. Equ. 11, 121–143 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rustichini, A.: Hopf bifurcation for functional-differential equations of mixed type. J. Dyn. Differ. Equ. 11, 145–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vainchtein, A., Van Vleck, E.S.: Nucleation and propagation of phase mixtures in a bistable chain. Phys. Rev. B 79, 144123 (2009)

    Article  Google Scholar 

  37. Waldvogel, J.: Towards a general error theory of the trapezoidal rule. Approx. Comput. 42, 267–282 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Hupkes acknowledges support from the Netherlands Organization for Scientific Research (NWO). Van Vleck acknowledges support from the NSF (DMS-1115408 and DMS-1419047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Hupkes.

Additional information

Dedicated to Professor John Mallet-Paret on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hupkes, H.J., Van Vleck, E.S. Travelling Waves for Complete Discretizations of Reaction Diffusion Systems. J Dyn Diff Equat 28, 955–1006 (2016). https://doi.org/10.1007/s10884-014-9423-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9423-9

Keywords

Mathematics Subject Classification

Navigation