Skip to main content
Log in

Stochastic Asymptotic Stability of SIR Model with Variable Diffusion Rates

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We introduce random fluctuations on contact and recovery rates in deterministic SIR model with disease deaths in nonparametric manner and obtain stochastic counterparts with general diffusion coefficients (functional contact and recovery rates).

$$\begin{aligned} \displaystyle dS&= \,\Big (-\beta S I +\mu (K-S)\Big )~dt - S I~ F_1\big (S,I,R\big ) ~dW_1\nonumber \\ dI&= \,\Big (\beta S I-\big (\alpha +\gamma +\mu \big )I\Big )~ dt + S I~ F_1\big (S,I,R\big ) ~dW_1-I~F_2\big (S,I,R\big ) ~dW_2 \\ dR&= \,\Big (\alpha I - \mu R\Big )~dt+ I~F_2\big (S,I,R\big ) ~dW_2. \nonumber \end{aligned}$$
(1)

The introduced stochastic model has functional diffusion coefficients which contains arbitrary local Lipschitz-continuous functions \(F_i\)’s defined on

$$\begin{aligned} {\mathbb {D}}=\{(S,I,R) \in {\mathbb {R}}^3: ~S\ge 0, ~I \ge 0, ~R \ge 0, ~S+I+R\le K\}. \end{aligned}$$

In this paper we prove the global existence of a unique strong solution and discuss stochastic asymptotic stability of disease free and endemic equilibria of the model and visualize our results with some simulations to confirm them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, E.J.: Stochastic differential equations and persistence time for two interacting populations. Dyn. Contin. Discrete Impuls. Syst. 5, 271–281 (1999)

    MATH  Google Scholar 

  2. Allen, L.J.S.: An Introduction to Stochastic Processes with Applications to Biology. Prentice Hall, New Jersey (2003)

    MATH  Google Scholar 

  3. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  4. Beretta, E., Kuang, Y.: Modeling and analysis of a marine bacteriophage infection. Math. Biosci. 149, 57–76 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beretta, E., Kolmanovskii, V., Shaikhet, L.: On the general structure of epidemic systems. Global asymptotic stability. Comput. Math. Appl. Part A 12, 677–694 (1986)

    Article  MATH  Google Scholar 

  6. Beretta, E., Kolmanovskii, V., Shaikhet, L.: Stability of epidemic model with time delays influenced by stochastic perturbations. Math. Comput. Simul. 45(3–4), 269–277 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brauer, F., van den Driessche, P., Wu, J. (eds.): Mathematical Epidemiology, Lecture Notes in Mathematics, vol. 1945. Springer, New York (2008)

    Google Scholar 

  8. Carletti, M.: On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment. Math. Biosci. 175, 117–131 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model of AIDS and condom use. J. Math. Anal. Appl. 325(1), 36–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341(2), 1084–1101 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York and Basel (1998)

    Google Scholar 

  12. Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Imhofa, L., Walcher, S.: Exclusion and persistence in deterministic and stochastic chemostat models. J. Differ. Equ. 217, 26–53 (2005)

    Article  Google Scholar 

  14. Jianga, D., Yua, J., Jia, C., Shia, N.: Asymptotic behavior of global positive solution to a stochastic SIR model. Math. Comput. Model. 54(1:2), 221–232 (2011)

    Article  Google Scholar 

  15. Khas’minskiĭ, R.: Stochastic Stability of Differential Equations. Sijthoff & Noordhoff, Alpen (1980)

    MATH  Google Scholar 

  16. Lahrouz, A., Omari, L., Kiouach, D.: Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model. Nonlinear Anal. Model. Control 16(1), 59–76 (2011)

    MATH  MathSciNet  Google Scholar 

  17. Lahrouz, A., Omari, L., Kiouach, D., Belmaati, A.: Deterministic and stochastic stability of a mathematical model of smoking. Stat. Probab. Lett. 81(8), 1276–1284 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schurz, H.: Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete Contin. Dyn. Syst. 7(3), 487–515 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schurz, H.: On moment-dissipative stochastic dynamical systems. Dynam. Syst. Appl. 10(1), 11–44 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Schurz, H.: Modelling, analysis and discretization of stochastic logistic equations. Int. J. Numer. Anal. Model. 4(2), 180–199 (2007)

    MathSciNet  Google Scholar 

  21. Tornatore, E., Buccellato, S.M., Vetro, P.: Stability of a stochastic SIR system. Phys. A 354, 111–126 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kursad Tosun.

Appendices

Appendix 1: Existence of a Unique Markovian, Continuous Time Solution

Consider the d-dimensional stochastic differential equation of the form

$$\begin{aligned} \displaystyle dX(t)=f\big (X(t),t\big )~dt+g\big (X(t),t\big )~dW(t) \end{aligned}$$
(23)

with an initial value \(X(t_0)=X_0,~~ t_0 \le t \le T < \infty \) where \(\displaystyle f:{\mathbb {R}}^{d} \times [t_0,T] \rightarrow {\mathbb {R}}^{d}\) and \(\displaystyle g:{\mathbb {R}}^{d} \times [t_0,T] \rightarrow {\mathbb {R}}^{d \times m}\) are Borel measurable, \(\displaystyle W=\{W(t)\}_{t\ge t_0}\) is an \(\displaystyle {\mathbb {R}}^m\)-valued Wiener process, and \(X_0\) is an \(\displaystyle {\mathbb {R}}^{d}\)-valued random variable.

The infinitesimal generator \(\mathbf {{\mathcal {L}}}\) associated with the SDE (23) is given by

$$\begin{aligned} \displaystyle {\mathcal {L}}=\frac{\partial }{\partial t}+ \sum _{i=1}^d f_i(x,t)\frac{\partial }{\partial x_i} +\frac{1}{2}\sum _{i,j=1}^m \Big (g(x,t)g^T(x,t)\Big )_{ij} ~\frac{\partial ^2}{\partial x_i \partial x_j}. \end{aligned}$$
(24)

Theorem 4

(\({\mathbb {D}}\) -invariance) (Khas’minskiĭ [15] as appears in [11]) Let \({\mathbb {D}}\) and \({\mathbb {D}}_n\) be open sets in \({\mathbb {R}}^d\) with

$$\begin{aligned} \displaystyle {\mathbb {D}}_n~\subseteq ~ {\mathbb {D}}_{n+1}, ~~~~~~~ \mathbb {\bar{D}}_n~\subseteq ~ {\mathbb {D}}, ~~\mathrm{ and }\, {\mathbb {D}}~=\bigcup _n ~ {\mathbb {D}}_n \end{aligned}$$

and suppose \(f\) and \(g\) satisfy the existence and uniqueness conditions for solutions of (23) on each set \(\{(t,x): t>t_0,\, x \in {\mathbb {D}}_n\}\). Suppose there is a nonnegative continuous function \(V: {\mathbb {D}}\times [t_0,T]\rightarrow {\mathbb {R}}_+\) with continuous partial derivatives and satisfying \({\mathcal {L}}V \le c~V\) for some positive constant \(c\) and \(t>t_0,\, x \in {\mathbb {D}}\). If also,

$$\begin{aligned} \displaystyle \inf _{t>t_0, x \in {\mathbb {D}} \backslash {\mathbb {D}}_n } V(x,t) \rightarrow \infty ~~~~\mathrm{ as }\,n \rightarrow \infty \end{aligned}$$

then, for any \(X_0\) independent of \(\sigma (W)\) such that \({\mathbb {P}}(X_0 \in {\mathbb {D}})=1,\) there is a unique Markovian, continuous time solution \(X\) of (23) with \(X(0)=X_0\), and \(X(t) \in {\mathbb {D}}\) for all \(t>0\) (a.s.).

Appendix 2: Stability of Equilibria

Consider the d-dimensional SDE

$$\begin{aligned} \displaystyle dX(t)=f\big (X(t),t\big )~dt+g\big (X(t),t\big )~dW(t),~~t \ge t_0, ~~X(t_0)=x_0. \end{aligned}$$
(25)

Assume that \(f\) and \(g\) satisfy, in addition to the existence and uniqueness assumptions, \(f(x^*,t)=0\) and \(g(x^*,t)=0\) for equilibrium solution \(x^*\) for \(t \ge t_0\). Furthermore, let’s assume that \(x_0\) be a non-random constant with probability 1.

Definition 1

The equilibrium solution \(x^*\) of the SDE (25) is stochastically stable (stable in probability) if for every \(\epsilon > 0\) and \(s \ge t_0\)

$$\begin{aligned} \displaystyle \lim _{x_0 \rightarrow x^*} {\mathbb {P}}\left( \sup _{t_0 \le s < \infty }\Vert X_{s,x_0}(t)\Vert \ge \epsilon \right) ~=~ 0 \end{aligned}$$
(26)

where \(X_{s,x_0}(t)\) denotes the solution of (25) satisfying \(X(s)=x_0\) at time \(t \ge s\).

Definition 2

The equilibrium solution \(x^*\) of the SDE (25) is said to be stochastically asymptotically stable if it is stochastically stable and

$$\begin{aligned} \displaystyle \lim _{x_0 \rightarrow x^*} {\mathbb {P}}\left( \lim _{t \rightarrow \infty } X_{s,x_0}(t) = x^* \right) ~=~ 1, \end{aligned}$$
(27)

Definition 3

The equilibrium solution \(x^*\) of the SDE (25) is said to be globally stochastically asymptotically stable if it is stochastically stable and for every \(x_0\) and every \(s\)

$$\begin{aligned} \displaystyle {\mathbb {P}}\left( \lim _{t \rightarrow \infty } X_{s,x_0}(t) = x^* \right) ~=~ 1. \end{aligned}$$
(28)

Theorem 5

(Arnold [3]) Assume that \(f\) and \(g\) satisfy the existence and uniqueness assumptions and they have continuous coefficients with respect to \(t\).

  1. (i)

    Suppose that there exist a positive definite function \(V~\in ~C^{2,1}\big (U_h \times [t_0,\infty )\big )\), where \(U_h=\{x \in {\mathbb {R}}^d:\Vert x-x^*\Vert <h\}\) for \(h>0\), such that

    $$\begin{aligned} \displaystyle \mathrm{ for \, all }~t \ge t_0, ~~~ x \in U_h: ~~~ {\mathcal {L}}V(x,t) \le 0. \end{aligned}$$
    (29)

    Then, the equilibrium solution \(x^*\) of (25) is stochastically stable.

  2. (ii)

    If, in addition, \(V\) is decrescent (there exists a positive definite function \(V_1\) such that \(V(x,t)\le V_1(x)\) for all \(x \in U_h\)) and \({\mathcal {L}}V(x,t)\) is negative definite, then the equilibrium solution \(x^*\) is stochastically asymptotically stable.

  3. (iii)

    If the assumptions of part ii) hold for a radially unbounded function \(V~\in ~C^{2,1}\big ({\mathbb {R}}^d \times [t_0,\infty )\big )\) defined everywhere then the equilibrium solution \(x^*\) is globally stochastically asymptotically stable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schurz, H., Tosun, K. Stochastic Asymptotic Stability of SIR Model with Variable Diffusion Rates. J Dyn Diff Equat 27, 69–82 (2015). https://doi.org/10.1007/s10884-014-9415-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9415-9

Keywords

Mathematics Subject Classification

Navigation