Skip to main content
Log in

Challenges in Pharmacology Modelling

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The increased emphasis on mechanistic and quantitative approaches in pharmacology presents new challenges to the design and analysis of mathematical models used in drug discovery. In this paper we present three of such challenges: (i) How to proceed when exposure data are scarce or plainly absent? Response versus time data for different doses are then the only source of information. (ii) The advent of biological (biologics) therapeutics has resulted in a new class of models which involve the interaction of drug and target. (iii) How to determine the impact of proteins at the target site on drug efficacy? We illustrate these challenges with three case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aston, P.J., Derks, G., Raji, A., Agoram, B.M., van der Graaf, P.H.: Mathematical analysis of the pharmacokinetic-pharmacodynamic (PKPD) behaviour of monoclonal antibodies: predicting in vivo potency. J. Theor. Biol. 281, 113–121 (2011)

  2. Benet, L.Z., Hoener, B.-A.: Changes in plasma protein binding have little clinical relevance. Clin. Pharmacol. Ther. 71, 116–121 (2002)

    Article  Google Scholar 

  3. Benet, L.Z.: Clearance (née Rowland) concepts: a downdate and an update. J. Pharmacokinet. Pharmacodyn. 37, 529–539 (2010)

    Article  Google Scholar 

  4. Dayneka, N.L., Garg, V., Jusko, W.J.: Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokin. Biopharm. 21, 457–478 (1993)

    Article  Google Scholar 

  5. Gabrielsson, J., Jusko, W.J., Alari, L.: Modeling of dose-response-time data: four examples of estimating the turnover parameters and generating kinetic functions from response profiles. Biopharm. Drug Dispos. 21, 41–52 (2000)

    Article  Google Scholar 

  6. Gabrielsson, J., Peletier, L.A.: Dose-response-time data analysis involving nonlinear dynamics, feedback and delay. Eur. J. Pharm. Sci. 59, 36–48 (2014)

  7. Gatto, G.J., Bohme, G.A., Caldwell, W.S., Letchworth, S.R., Traina, V.M., Obinu, M.C., Laville, M., Reibaud, M., Pradier, L., Dunbar, G., Bencherif, M.: TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects. CNS Drug Rev. 10, 147–66 (2004)

    Article  Google Scholar 

  8. Gibiansky, L., Gibiansky, E., Kakkar, T., Ma, P.: Approximations of the target-mediated drug disposition model and identifiability of model parameters. J. Pharmacokinet. Pharmacodyn. 35, 573–591 (2008)

    Article  Google Scholar 

  9. Gibiansky, L., Gibiansky, E.: Target-mediated drug disposition model: relationships with indirect response models and application to population PKPD analysis. J. Pharmacokinet. Pharmacodyn. 36, 341–351 (2009)

    Article  Google Scholar 

  10. Levy, G.: Relationship between elimination rate of drugs and rate of decline of their pharmacologic effects. J. Pharm. Sci. 53, 342–343 (1964)

    Article  Google Scholar 

  11. Levy, G.: Kinetics of pharmacological effects. Clin. Pharmacol. Ther. 7, 362 (1966)

    Google Scholar 

  12. Luu, K.T., Bergqvist, S., Chen, E., Hu-Lowe, D., Kraynov, E.: A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J. Pharm. Exp. Ther. JPET 341, 702–708 (2012)

    Article  Google Scholar 

  13. Mager, D.E., Jusko, W.J.: General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J. Pharmacokinet. Phamacodyn. 28, 507–532 (2001)

    Article  Google Scholar 

  14. Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  15. Ng, C.M., Joshi, A., Dedrick, R.L., Garovoy, M.R., Bauer, R.J.: Pharmacokinetic pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm. Res. 22, 1088–1100 (2005)

    Article  Google Scholar 

  16. Peletier, L.A., Benson, N., van der Graaf, P.H.: Impact of plasma-protein binding on receptor occupancy: an analytical description. J. Theor. Biol. 256, 253–262 (2009)

    Article  Google Scholar 

  17. Peletier, L.A., Benson, N., van der Graaf, P.H.: Impact of protein binding on receptor occupancy: a two-compartment model. J. Theor. Biol. 265, 657–671 (2010)

    Article  Google Scholar 

  18. Peletier, L.A., Gabrielsson, J.: Dynamics of target-mediated drug disposition. Eur. J. Pharm. Sci. 38, 445–464 (2009)

  19. Peletier, L.A., Gabrielsson, J.: Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J. Pharmacokinet. Pharmacodyn. 39, 429–451 (2012)

    Article  Google Scholar 

  20. Segel, L.A., Slemrod, M.: The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Smith, D.A., Di, L., Kerns, E.H.: The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat. Rev. Drug Discov. 9, 929–939 (2010)

    Article  Google Scholar 

  22. Smolen, V.F.: Quantitative determination of drug bioavailability and biokinetic behavior from pharmacological data for ophtalmic and oral administration of a mydriatic drug. J. Pharm. Sci. 60, 354–363 (1971)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Piet van der Graaf for discussions about the section on protein binding, which also uses ideas developed in an earlier collaboration (cf. Peletier et al. [16] and [17]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lambertus A. Peletier.

Additional information

In honour and memory of Klaus KirchgŁassner.

Appendix A: Derivation of the expression for \(R_n(t)\) in (2.11)

Appendix A: Derivation of the expression for \(R_n(t)\) in (2.11)

Putting \(S(A_{b})=1+S_\mathrm{max}\) in the the system (2.4) we obtain the model

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \frac{dR_{1}}{dt} &{}= k_\mathrm{in}(1+S_\mathrm{max})-k_\mathrm{out} R_{1}, \\ &{}............. \\ \displaystyle \frac{dR_{i}}{dt} &{}= k_\mathrm{out}(R_{i-1}-R_{i}), \qquad i=2,3,\dots n. \end{array}\right. \end{aligned}$$
(5.1)

We shall derive an explicit solution of this problem.

For convenience we put \(R_{i} = R_{0}(1+x_{i})\) and \(\tau = k_\mathrm{out}\, t\). Then the system (5.1) can be rewritten as

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \frac{dx_{1}}{d\tau } &{}= S_\mathrm{max}- x_{1}, \\ &{}............. \\ \displaystyle \frac{dx_{i}}{d\tau } &{}= x_{i-1}-x_{i}, \qquad i=2,3,\dots n. \end{array}\right. \end{aligned}$$
(5.2)

This system can be solved sequentially. Since \(x_{i}(0)=0\) for \(i = 1, \dots . n\) we obtain

$$\begin{aligned} x_{1}(\tau )&= S_\mathrm{max}e^{-\tau }(e^{\tau } - 1), \nonumber \\ x_{2}(\tau )&= S_\mathrm{max}e^{-\tau }(e^{\tau } - 1-t), \nonumber \\ x_{3}(\tau )&= S_\mathrm{max}e^{-\tau }\left( e^{\tau } - 1-\tau - \frac{1}{2}\tau ^{2}\right) , \end{aligned}$$
(5.3)

and for general \(n \ge 1\):

$$\begin{aligned} x_n(\tau ) = S_\mathrm{max}\left( 1 - e^{-\tau }\sum _{m=0}^{n-1} \frac{\tau ^m}{m!}\right) . \end{aligned}$$
(5.4)

Thus, in terms of the original variables we obtain the following expression for the responses:

$$\begin{aligned} R_n(t) = R_{0}\left\{ 1+ S_\mathrm{max}\left( 1 - e^{-k_\mathrm{out}t}\sum _{m=0}^{n-1} \frac{(k_\mathrm{out}t)^m}{m!}\right) \right\} . \end{aligned}$$
(5.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peletier, L.A., Gabrielsson, J. Challenges in Pharmacology Modelling. J Dyn Diff Equat 27, 941–959 (2015). https://doi.org/10.1007/s10884-014-9377-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9377-y

Keywords

Navigation