Skip to main content
Log in

Distribution of Energy and Convergence to Equilibria in Extended Dissipative Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We are interested in understanding the dynamics of dissipative partial differential equations on unbounded spatial domains. We consider systems for which the energy density \(e \ge 0\) satisfies an evolution law of the form \(\partial _t e = \mathrm{div}_x f - d\), where \(-f\) is the energy flux and \(d \ge 0\) the energy dissipation rate. We also suppose that \(|f|^2 \le b(e)d\) for some nonnegative function \(b\). Under these assumptions we establish simple and universal bounds on the time-integrated energy flux, which in turn allow us to estimate the amount of energy that is dissipated in a given domain over a long interval of time. In low space dimensions \(N \le 2\), we deduce that any relatively compact trajectory converges on average to the set of equilibria, in a sense that we quantify precisely. As an application, we consider the incompressible Navier–Stokes equation in the infinite cylinder \({\mathbb {R}}\times \mathbb {T}\), and for solutions that are merely bounded we prove that the vorticity converges uniformly to zero on large subdomains, if we disregard a small subset of the time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series 55. Courier Dover Publications, New York (1964)

    MATH  Google Scholar 

  2. Afendikov, A., Mielke, A.: Dynamical properties of spatially non-decaying 2D Navier–Stokes flows with Kolmogorov forcing in an infinite strip. J. Math. Fluid Mech. 7(suppl. 1), S51–S67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen, S., Cahn, J.: A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta. Metal. 27, 1085–1095 (1979)

    Article  Google Scholar 

  4. Aranson, I., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronson, D., Weinberger, H.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arrieta, J., Rodriguez-Bernal, A., Cholewa, J., Dlotko, T.: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14, 253–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babin, A., Vishik, M.: Attractors of partial differential equations in an unbounded domain. Proc. R. Soc. Edinburgh 116A, 221–243 (1990)

    Article  MathSciNet  Google Scholar 

  8. Carr, J., Pego, R.: Metastable patterns in solutions of \(u_t=\epsilon ^2u_{xx}-f(u)\). Commun. Pure Appl. Math. 42, 523–576 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Collet, P.: Thermodynamic limit of the Ginzburg–Landau equations. Nonlinearity 7, 1175–1190 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Collet, P., Eckmann, J.-P.: Space-time behaviour in problems of hydrodynamic type: a case study. Nonlinearity 5, 1265–1302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conway, J., Sloane, N.: Sphere packings, lattices and groups. Grundlehren der Mathematischen Wissenschaften, vol. 290. Springer, New York (1988)

    Google Scholar 

  12. Eckmann, J.-P., Rougemont, J.: Coarsening by Ginzburg–Landau dynamics. Commun. Math. Phys. 199, 441–470 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ei, S.-I.: The motion of weakly interacting pulses in reaction-diffusion systems. J. Dyn. Differ. Equ. 14, 85–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E.: Bounded, locally compact global attractors for semilinear damped wave equations on \({\mathbb{R}}^n\). J. Diff. Integral Equ. 9, 1147–1156 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Gallay, Th, Slijepčević, S.: Energy flow in formally gradient partial differential equations on unbounded domains. J. Dyn. Differ. Equ. 13, 757–789 (2001)

    Article  MATH  Google Scholar 

  16. Gallay, Th., Slijepčević, S.: Energy bounds for the two-dimensional Navier–Stokes equations in an infinite cylinder, to appear. Commun. Partial Diff. Equ. (2014)

  17. Giga, Y., Matsui, S., Sawada, O.: Global existence of two-dimensional Navier–Stokes flow with nondecaying initial velocity. J. Math. Fluid Mech. 3, 302–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, B., Ding, S.: Landau–Lifshitz equations. Frontiers of Research with the Chinese Academy of Sciences, vol. 1. World Scientific, Hackensack (2008)

    Google Scholar 

  19. Hale, J.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25. AMS, Providence (1988)

    Google Scholar 

  20. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Google Scholar 

  21. Massatt, P.: Limiting behavior for strongly damped nonlinear wave equations. J. Differ. Equ. 48, 334–349 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mielke, A.: The Ginzburg–Landau equation in its role as a modulation equation. Handbook of Dynamical Systems, vol. 2. North-Holland, Amsterdam (2002)

    Google Scholar 

  23. Mielke, A., Schneider, G.: Attractors for modulation equations on unbounded domains: existence and comparison. Nonlinearity 8, 743–768 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mischaikow, K., Morita, Y.: Dynamics on the global attractor of a gradient flow arising from the Ginzburg–Landau equation. Jpn. J. Ind. Appl. Math. 11, 185–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pata, V., Zelik, S.: Smooth attractors for strongly damped wave equations. Nonlinearity 19, 1495–1506 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rougemont, J.: Dynamics of kinks in the Ginzburg–Landau equation: approach to metastable shape and collapse of embedded pair of kinks. Nonlinearity 12, 539–554 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sawada, O., Taniuchi, Y.: A remark on \(L^\infty \) solutions to the 2-D Navier–Stokes equations. J. Math. Fluid Mech. 9, 533–542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zelik, S.: Infinite energy solutions for damped Navier–Stokes equations in \({\mathbb{R}}^2\). J. Math. Fluid Mech. 15, 717–745 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Part of this work was done when the second author visited Institut Fourier at University of Grenoble, whose hospitality is gratefully acknowledged. The authors thank P. Poláčik and A. Scheel for fruitful discussions. Th.G. was supported in part by the ANR projet PREFERED of the French Ministry of Research, and S.S. by the grant No 037-0372791-2803 of the Croatian Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Gallay.

Additional information

Dedicated with deep respect to the memory of Klaus Kirchgässner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallay, T., Slijepčević, S. Distribution of Energy and Convergence to Equilibria in Extended Dissipative Systems. J Dyn Diff Equat 27, 653–682 (2015). https://doi.org/10.1007/s10884-014-9376-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9376-z

Keywords

Navigation