Skip to main content
Log in

Localized Topological Pressure for Random Dynamical Systems

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

This paper is devote to the investigation of fiber localized topological pressure for random dynamical systems. By establishing Katok’s pressure formula under the actions of random dynamical systems, we develop a variational principle between the fiber localized topological pressure and fiber localized measure-theoretic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable

References

  1. Adler R, Konheim A, McAndrew M. Topological entropy. Trans Amer Math Soc. 1965;114:309–19.

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold L Random dynamical systems, Springer-Verlag, New-York, 1998.

  3. Barreira L, Saussol B, Schmeling J. Higher-dimensional multifractal analysis. J Math Pures Appl. 2002;9:67–91.

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira L, Saussol B. Variational principles and mixed multifractal spectra. Trans Am Math Soc. 2001;353:3919–44.

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchard F, Glasner E, Host B. A variation on the variational principle and application to entropy pairs. Ergodic Theory Dynam Syst. 1997;17:29–43.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogenschutz T. Entropy, pressure and a variational principle for random dynamical systems. Random Comput Dynam. 1992;1:99–116.

    MathSciNet  MATH  Google Scholar 

  7. Castaing C, Valadier M. Convex analysis and measurable multifunctions. New York: Springer-Verlag; 1977.

    Book  MATH  Google Scholar 

  8. Goodwyn L. Topological entropy bounds measure-theoretic entropy. Proc Amer Math Soc. 1969;23:679–88.

    Article  MathSciNet  MATH  Google Scholar 

  9. Garibaldi E, Lopes A. Functions for relative maximization. Dyn Syst. 2007;22:511–28.

    Article  MathSciNet  MATH  Google Scholar 

  10. Giulietti P, Kloeckner B, Lopes A, Marcon D. The calculus of thermodynamical formalism. J Eur Math Soc. 2018;20:2357–412.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jenkinson O. Rotation, entropy, and equilibrium states. Trans Amer Math Soc. 2001;353:3713–39.

    Article  MathSciNet  MATH  Google Scholar 

  12. Katok A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst Hautes Études Sci Publ Math. 1980;51:137–73.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kifer Y. On the topological pressure for random bundle transformations. Trans Amer Math Soc Ser. 2001;202:197–214.

    MathSciNet  MATH  Google Scholar 

  14. Kifer Y. Ergodic theory of random transformations. Boston: Birkhauser; 1986.

    Book  MATH  Google Scholar 

  15. Kucherenko T, Wolf C. Geometry and entropy of generalized rotation sets. Israel J Math. 2014;199:791–829.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kucherenko T, Wolf C. Localized pressure and equilibrium states. J Stat Phys. 2015;160:1529–44.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kucherenko T, Wolf C. Ground states and zero-temperature measures at the boundary of rotation sets. Ergodic Theory Dynam Syst. 2019;39:201–24.

    Article  MathSciNet  MATH  Google Scholar 

  18. Mendoza L. Ergodic attractors for diffeomorphisms of surfaces. J London Math Soc. 1988;37:362–74.

    Article  MathSciNet  MATH  Google Scholar 

  19. Misiurewicz M. A short proof of the variational principle for a \(Z^n_{+}\) action on a compact space. Bull Acad Polon Sci Sér Sci Math Astronom Phys. 1976;24:1069–75.

    MathSciNet  MATH  Google Scholar 

  20. Pesin Y. Chicago Lectures in Mathematics. Dimension theory in dynamical systems: contemporary views and applications. Chicago University Press, Chicago, 1997.

  21. Ruelle D. Statistical mechanics on compact set with \(Z^v\) action satisfying expansiveness and specification. Trans Amer Math Soc. 1973;187:237–51.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruelle D. Thermodynamic Formalism. Cambridge: Cambridge University Press; 2004.

    Book  MATH  Google Scholar 

  23. Shu L. The hausdorff dimension of horseshores under random perturbations. Stoch Dynam. 2009;1:101–20.

    Article  MATH  Google Scholar 

  24. Takens F, Verbitskiy E. On the variational principle for the topological entropy of certain non-compact sets. Ergodic Theory Dynam Syst. 2003;23:317–48.

    Article  MathSciNet  MATH  Google Scholar 

  25. Walters P. A variational principle for the pressure of continuous transformations. Amer J Math. 1975;97:937–71.

    Article  MathSciNet  MATH  Google Scholar 

  26. Walters P. An introduction to ergodic theory. New York-Berlin: Springer-Verlag; 1982.

    Book  MATH  Google Scholar 

  27. Wang Y, Zhao C. Localized topological pressure for amenable group actions. Anal Math Phys. 2022;12:14.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wolf C, Yang Y. A topological classification of locally constant potentials via zero-temperature measures. Trans Amer Math Soc. 2019;372:3113–40.

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu Y. Two notes on measure-theoretic entropy of random dynamical systems. Acta Math Sin.(Engl. Ser.) 2009;25:961–970.

Download references

Acknowledgements

The authors would like to thank the referee for many useful comments. We also would like to express our gratitude to Tianyuan Mathematical Center in Southwest China(No. 11826102), Sichuan University and Southwest Jiaotong University for their support and hospitality

Funding

The first author was supported by NNSF of China (12201328), Natural Science Foundation of Zhejiang Province(LQ22A010012) and Ningbo Natural Science Foundation (2022J145). The second author was supported by NNSF of China (No. 12101340). The third author was supported by NNSF of China (No. 11901419)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ji.

Ethics declarations

Competing interests

The authors declare that they have no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ji, Y. & Zhao, C. Localized Topological Pressure for Random Dynamical Systems. J Dyn Control Syst 29, 1757–1773 (2023). https://doi.org/10.1007/s10883-023-09658-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-023-09658-w

Keywords

Mathematics Subject Classification (2010)

Navigation