Skip to main content
Log in

Conjugate Time in the Sub-Riemannian Problem on the Cartan Group

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

A Correction to this article was published on 19 August 2021

This article has been updated

Abstract

The Cartan group is the free nilpotent Lie group of rank 2 and step 3. We consider the left-invariant sub-Riemannian problem on the Cartan group defined by an inner product in the first layer of its Lie algebra. This problem gives a nilpotent approximation of an arbitrary sub-Riemannian problem with the growth vector (2,3,5). In previous works, we described a group of symmetries of the sub-Riemannian problem on the Cartan group, and the corresponding Maxwell time — the first time when symmetric geodesics intersect one another. It is known that geodesics are not globally optimal after the Maxwell time. In this work, we study local optimality of geodesics on the Cartan group. We prove that the first conjugate time along a geodesic is not less than the Maxwell time corresponding to the group of symmetries. We characterize geodesics for which the first conjugate time is equal to the first Maxwell time. Moreover, we describe continuity of the first conjugate time near infinite values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Change history

References

  1. Agrachev A, Barilari D, Boscain U. A comprehensive introduction to sub-Riemannian geometry. Cambridge: Cambridge University Press; 2019.

    Book  Google Scholar 

  2. Agrachev AA. Geometry of optimal control problems and Hamiltonian systems. Nonlinear and optimal control theory, lecture notes in mathematics. CIME. New York: Springer; 2008. p. 1–59.

  3. Agrachev AA, Sachkov YL. An intrinsic approach to the control of rolling bodies. Proceedings of the 38-th IEEE conference on decision and control. Arizona: Phoenix; 1999. p. 431–35. December 7–10.

  4. Agrachev AA, Sachkov Y.L. Control theory from the geometric viewpoint. New York: Springer; 2004.

    Book  Google Scholar 

  5. Agrachev AA, Sarychev AA. Filtration of a Lie algebra of vector fields and nilpotent approximation of control systems. Dokl. Akad. Nauk SSSR 1987; 295:104–08. English transl. in Soviet Math. Dokl. 36(1988).

    MATH  Google Scholar 

  6. Anzaldo-Meneses A, Monroy-Pérez F. Charges in magnetic fields and sub-Riemannian geodesics, Contemporary trends in nonlinear geometric control theory and its applications. World scientific. In: Anzaldo-Meneses A, Bonnard B, Gauthier JP, and Monroy-Pérez F, editors; 2002. p. 183–202.

  7. Ardentov A, Hakavuori E. Cut time in the sub-Riemannian problem on the Cartan group. Preparation; 2021.

  8. Ardentov AA, Sachkov YL. Extremal trajectories in nilpotent sub-Riemannian problem on the Engel group. Matematicheskii Sbornik 2011;202(11):31–54. (in Russian).

    Article  MathSciNet  Google Scholar 

  9. Ardentov AA, Sachkov YL. Conjugate points in nilpotent sub-Riemannian problem on the Engel group. J Mathe Sci 2013;195(3):369–90.

    Article  MathSciNet  Google Scholar 

  10. Ardentov A, Sachkov YL. Cut time in sub-Riemannian problem on Engel group. ESAIM: Control, Optimisation and Calculus of Variations 2015;21:958–88.

    MathSciNet  MATH  Google Scholar 

  11. Ardentov AA, Sachkov YL. Maxwell strata and cut locus in the Sub-Riemannian problem on the engel group. Regular and Chaotic Dynamics 2017;22(8): 909–36.

    Article  MathSciNet  Google Scholar 

  12. Bellaiche A. In: Bellaiche A, Risler J-J, editors. The tangent space in sub-riemannian geometry// in: Sub-riemannian geometry. Swizerland: Birkhäuser; 1996, pp. 1–78.

  13. Berestovskii VN, Zubareva IA. Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SO(3). Siberian Math J 2015;56:4: 601–11.

    Article  MathSciNet  Google Scholar 

  14. Berestovskii VN, Zubareva IA. Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group SL(2). Siberian Math J 2016;57:3: 411–24.

    Article  MathSciNet  Google Scholar 

  15. Bizyaev IA, Borisov AV, Kilin AA, Mamaev IS. Integrability and nonintegrability of Sub-Riemannian geodesic flows on Carnot groups. Regular and Chaotic Dynamics 2016;21(6):759–74.

    Article  MathSciNet  Google Scholar 

  16. Boscain U, Rossi F. Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J Cont Optim 2008;47:1851–78.

    Article  Google Scholar 

  17. Brockett R. Control theory and singular Riemannian geometry//. New directions in applied mathematics. In: Hilton P and Young G, editors. New York: Springer; 1982. p. 11–27.

  18. Brockett R, Dai L. Non-holonomic kinematics and the role of elliptic functions in constructive controllability//. Nonholonomic motion planning. In: Li Z and Canny J, editors. Boston: Kluwer; 1993. p. 1–21.

  19. Butt Y, Bhatti AI, Sachkov Y. Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group SH(2). J Dyn Control Syst 2017;23:155–95.

    Article  MathSciNet  Google Scholar 

  20. Cartan E. Lès systemes de Pfaff a cinque variables et lès equations aux derivees partielles du second ordre. Ann Sci Ècole Normale 1910;27(3):109–92.

    Article  Google Scholar 

  21. Euler L. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Sive Solutio problematis isoperimitrici latissimo sensu accepti. Lausanne: Geneva; 1744.

    Book  Google Scholar 

  22. Jurdjevic V. The geometry of the plate-ball problem. Arch. Rat. Mech. Anal. 1993;124:305–28.

    Article  MathSciNet  Google Scholar 

  23. Jurdjevic V. 1997. Geometric control theory: Cambridge University Press, Cambridge.

  24. Laumond JP. Nonholonomic motion planning for mobile robots, LAAS Report 98211. LAAS-CNRS, Toulouse: France; 1998.

    Google Scholar 

  25. Lokutsievskii L, Sachkov Y. Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4, Sbornik. Mathematics 2018;209:5: 74–119.

    Google Scholar 

  26. Love AEH. A Treatise on the Mathematical Theory of Elasticity, 4th ed. New York: Dover; 1927.

    MATH  Google Scholar 

  27. Marigo A, Bicchi A. Rolling bodies with regular surface: the holonomic case, In Differential geometry and control: Summer Research Institute on Differential Geometry and Control, June 29July 19, 1997, Univ. Colorado. Proc. Sympos. Pure Math. 64, Amer. Math. Soc., Providence, RI. In: Boulder GF et al., editors; 1999. p. 241–56.

  28. Montgomery R. A tour of subriemannian geometries, their geodesics and applications. United States: American Mathematical Society; 2002.

    MATH  Google Scholar 

  29. Myasnichenko O. Nilpotent (3, 6) sub-Riemannian problem. J Dynam Control Syst 2002;8:4:573–97.

    Article  MathSciNet  Google Scholar 

  30. Pontryagin LS, Boltayanskii VG, Gamkrelidze RV, Mishchenko EF. The mathematical theory of optimal processes. New York: Wiley; 1962. (Translated from Russian).

    Google Scholar 

  31. Postnikov MM. Lie groups and Lie algebras (in Russian). Nauka: Moscow; 1982.

    Google Scholar 

  32. Sachkov YL. Exponential map in the generalized Dido problem (in Russian). Mat Sb 2003;194:9:63–90.

    Article  Google Scholar 

  33. Sachkov YL. Symmetries of Flat Rank Two Distributions and Sub-Riemannian Structures. Trans Amer Mathe Soc 2004;356(2):457–94.

    Article  MathSciNet  Google Scholar 

  34. Sachkov YL. Discrete symmetries in the generalized Dido problem, Sbornik. Mathematics 2006;197(2):95–116.

    MathSciNet  MATH  Google Scholar 

  35. Sachkov YL. The Maxwell set in the generalized Dido problem, Sbornik. Mathematics 2006;197(4):123–50.

    MathSciNet  Google Scholar 

  36. Sachkov YL. Complete description of the Maxwell strata in the generalized Dido problem, Sbornik. Mathematics 2006;197(6):111–60.

    MathSciNet  Google Scholar 

  37. Sachkov YL. Conjugate points in Euler’s elastic problem // Journal of Dynamical and Control Systems (Springer. New York) 2008;14(3):409–39.

    Google Scholar 

  38. Sachkov YL. Conjugate and cut time in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 2010;16:1018–39.

    MathSciNet  MATH  Google Scholar 

  39. Sarychev AV. The index of second variation of a control system, Matem. Sbornik 1980;113:464–86. English transl. in: Math. USSR Sbornik 41 (1982), 383–401.

    MathSciNet  Google Scholar 

  40. Vendittelli M, Laumond JP, Oriolo G. 1999. Steering nonholonomic systems via nilpotent approximations: The general two-trailer system, IEEE International Conference on Robotics and Automation, May 10–15, Detroit MI.

  41. Vershik AM, Gershkovich VY. Nonholonomic Dynamical Systems. Geometry of distributions and variational problems. (Russian). Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental’nyje Napravleniya, Vol. 16, VINITI, Moscow, 1987, 5–85. English translation in: Encyclopedia of Math. Sci. 16, Dynamical Systems 7. New York: Springer; 1994.

  42. Whittaker ET, Watson GN. A course of modern analysis. Cambridge: Cambridge University Press; 1927.

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the reviewer whose comments allowed to improve presentation of the paper.

Funding

The work is supported by the Mathematical Center in Akademgorodok under Agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Sachkov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Funding section has been corrected to “The work is supported by the Mathematical Center in Akademgorodok under Agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.” Affiliations have been revised as follows: 1Sobolev Institute of Mathematics, Academic Koptyug avenue 4, 630090, Novosibirsk, Russia 2Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky, Russia

Appendix: . Explicit formulas for coefficients of Jacobian

Appendix: . Explicit formulas for coefficients of Jacobian

In this appendix we present explicit formulas for the coefficients a01, a12 of the Jacobian J1 (5.2) in the domain C2.

$$ \begin{array}{@{}rcl@{}} &&a_{01} = \sum\limits_{j=0}^{3} \sum\limits_{i=0}^{j} c_{i, j-i} F^{i}(u_{1}) E^{j-i}(u_{1}), \\ &&c_{00} = - 2 k^{2} \sin^{2} u_{1} \cos^{2} u_{1} \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&c_{01} = \cos u_{1} \sin u_{1} (4+k^{2}(1-6\sin^{2} u_{1})), \\ &&c_{02} = - 3 \sqrt{1-k^{2} \sin^{2} u_{1}} (1-2\sin^{2} u_{1}), \\ &&c_{11} = (2-k^{2}) \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&c_{20} = (1-k^{2}) \sqrt{1-k^{2} \sin^{2} u_{1}} (1-2\sin^{2} u_{1}), \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&c_{03} = - 2 \cos u_{1} \sin u_{1}, \\ &&c_{12} = (2-k^{2}) \cos u_{1} \sin u_{1}, \\ &&c_{21} = 2(1-k^{2}) \cos u_{1} \sin u_{1}, \\ &&c_{30} = -(1-k^{2})(2-k^{2}) \cos u_{1} \sin u_{1}, \end{array} $$
(A.1)
$$ \begin{array}{@{}rcl@{}} &&a_{21} = \sum\limits_{j=0}^{5} \sum\limits_{i=0}^{j} d_{i,j-i} F^{i}(u_{1}) E^{j-i}(u_{1}), \\ &&d_{00} = - 6 k^{7} \sin^{3} u_{1} \cos^{3} u_{1}, \\ &&d_{01} = 20 k^{5} \sin^{2} u_{1} \cos^{2} u_{1} \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{10} = - 6 k^{5} (2-k^{2}) \sin^{2} u_{1} \cos^{2} u_{1} \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{02} = - 2 k^{3} \sin u_{1} \cos u_{1}(12-k^{2}(1 + 10 \sin^{2} u_{1})), \\ &&d_{11} = \frac{k^{3}}{2} \sin u_{1} \cos u_{1}(32 - 8 k^{2}(1+6\sin^{2} u_{1}) + 3 k^{4}(1+8\sin^{2} u_{1})), \\ &&d_{20} = \frac{k^{3}}{2} \sin u_{1} \cos u_{1}(16 + 3 k^{6} \sin^{2} u_{1} + k^{4} (9-8 \sin^{2} u_{1})-4k^{2}(7-2 \sin^{2} u_{1})), \\ &&d_{03} = 8 k (2-k^{2}) \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{12} = - \frac{k}{2}(32 - 32 k^{2} + 15 k^{4}) \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{21} = - \frac{k}{2}(32 - 48 k^{2} + 10k^{4}+3k^{6}) \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{30} = \frac k2 (32 - 64 k^{2} + 41 k^{4} - 9 k^{6}) \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{04} = -10k^{3} \sin u_{1} \cos u_{1}, \\ &&d_{13} = 12 k^{3}(2-k^{2}) \sin u_{1} \cos u_{1}, \\ &&d_{22} = - \frac 32 k^{3}(8-8k^{2}+3k^{4}) \sin u_{1} \cos u_{1}, \\ &&d_{31} = - \frac{k^{3}}{2}(16-24k^{2}+6k^{4}+k^{6}) \sin u_{1} \cos u_{1}, \\ &&d_{40} = \frac 32 k^{3}(1-k^{2})(2-k^{2})^{2} \sin u_{1} \cos u_{1}, \\ &&d_{05} = 4 k \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{14} = - 6 k (2-k^{2}) \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{23} = k (8-8k^{2} +3k^{4}) \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{32} = \frac k2 (16 -24k^{2}+6k^{4}+k^{6})\sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{41} = -3k(1-k^{2})(2-k^{2})^{2} \sqrt{1-k^{2} \sin^{2} u_{1}}, \\ &&d_{50} = \frac k2 (1-k^{2})(2-k^{2})^{3} \sqrt{1-k^{2} \sin^{2} u_{1}}. \end{array} $$
(A.2)

Here F(u1) and E(u1) are elliptic integrals of the first and second kinds [42].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachkov, Y.L. Conjugate Time in the Sub-Riemannian Problem on the Cartan Group. J Dyn Control Syst 27, 709–751 (2021). https://doi.org/10.1007/s10883-021-09542-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-021-09542-5

Keywords

Mathematics Subject Classification 2010

Navigation