Skip to main content
Log in

Approximate Controllability of Non-autonomous Evolution System with Nonlocal Conditions

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this article, we are concerned with the existence of mild solutions as well as approximate controllability for a class of non-autonomous evolution system of parabolic type with nonlocal conditions in Banach spaces. Sufficient conditions of existence of mild solutions and approximate controllability for the desired problem are presented by introducing a new Green’s function and constructing a control function involving Gramian controllability operator. Some sufficient conditions of approximate controllability are formulated and proved here by using the resolvent operator condition. The discussions are based on Schauder’s fixed-point theorem as well as the theory of evolution family. An example is also given to illustrate the feasibility of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acquistapace P. Evolution operators and strong solution of abstract parabolic equations. Differential Integral Equations 1988;1:433–457.

    MathSciNet  MATH  Google Scholar 

  2. Acquistapace P, Terreni B. A unified approach to abstract linear parabolic equations. Rend Semin Mat Univ Padova 1987;78:47–107.

    MathSciNet  MATH  Google Scholar 

  3. Amann H. Parabolic evolution equations and nonlinear boundary conditions. J Differential Equations 1988;72:201–269.

    Article  MathSciNet  Google Scholar 

  4. Boucherif A. Semilinear evolution inclutions with nonlocal conditions. Appl Math Lett 2009;22:1145–1149.

    Article  MathSciNet  Google Scholar 

  5. Byszewski L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J Math Anal Appl 1991;162:494–505.

    Article  MathSciNet  Google Scholar 

  6. Byszewski L. Existence and uniqueness of a classical solutions to a functional-differential abstract nonlocal Cauchy problem. J Math Appl Stoch Anal 1999; 12:91–97.

    Article  MathSciNet  Google Scholar 

  7. Chang YK, Pereira A, Ponce R. Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract Calc Appl Anal 2017;20:963–987.

    Article  MathSciNet  Google Scholar 

  8. Chen P, Li Y. Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Results Math 2013;63:731–744.

    Article  MathSciNet  Google Scholar 

  9. Chen P, Zhang X, Li Y. Study on fractional non-autonomous evolution equations with delay. Comput Math Appl 2017;73:794–803.

    Article  MathSciNet  Google Scholar 

  10. Chen P, Zhang X, Li Y. 2017. Approximation technique for fractional evolution equations with nonlocal integral conditions. Mediterr J Math, Vol. 14. Art. 226.

  11. Chen P, Zhang X, Li Y. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Commun Pure Appl Anal 2018;17: 1975–1992.

    Article  MathSciNet  Google Scholar 

  12. Deng K. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J Math Anal Appl 1993;179:630–637.

    Article  MathSciNet  Google Scholar 

  13. Ezzinbi K, Fu X, Hilal K. Existence and regularity in the α-norm for some neutral partial differential equations with nonlocal conditions. Nonlinear Anal 2007;67:1613–1622.

    Article  MathSciNet  Google Scholar 

  14. Fan Z, Dong Q, Li G. Approximate controllability for semilinear composite fractional relaxation equations. Fract Calc Appl Anal 2016;19:267–284.

    Article  MathSciNet  Google Scholar 

  15. Fitzgibbon WE. Semilinear functional equations in Banach space. J Differential Equations 1978;29:1–14.

    Article  MathSciNet  Google Scholar 

  16. Fu X. Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions. Electron J Differential Equations 2012;2012:1–15.

    MathSciNet  Google Scholar 

  17. Fu X. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evol Equ Control Theory 2017;6:517–534.

    Article  MathSciNet  Google Scholar 

  18. Fu X, Huang R. Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions. Autom Remote Control 2016;77:428–442.

    Article  MathSciNet  Google Scholar 

  19. Fu X, Zhang Y. Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions. Acta Math Sci Ser B Engl Ed 2013;33:747–757.

    Article  MathSciNet  Google Scholar 

  20. Henry D, Vol. 840. Geometric theory of semilinear parabolic equations lecture notes in math. New York: Springer; 1981.

    Book  Google Scholar 

  21. George RK. Approximate controllability of non-autonomous semilinear systems. Nonlinear Anal 1995;24:1377–1393.

    Article  MathSciNet  Google Scholar 

  22. Kalman RE. Controllablity of linear dynamical systems. Contrib Diff Equ 1963; 1:190–213.

    Google Scholar 

  23. Liang J, Liu JH, Xiao TJ. Nonlocal Cauchy problems for nonautonomous evolution equations. Commun Pure Appl Anal 2006;5:529–535.

    Article  MathSciNet  Google Scholar 

  24. Liang J, Yang H. Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl Math Comput 2015;254:20–29.

    MathSciNet  MATH  Google Scholar 

  25. Liu Z, Li X. Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J Control Optim 2015;53:1920–1933.

    Article  MathSciNet  Google Scholar 

  26. Mahmudov NI. Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J Control Optim 2003;42: 1604–1622.

    Article  MathSciNet  Google Scholar 

  27. Mahmudov NI. Approximate controllability of evolution systems with nonlocal conditions. Nonlinear Anal 2008;68:536–546.

    Article  MathSciNet  Google Scholar 

  28. Pazy A. Semigroups of linear operators and applications to partial differential equations. Berlin: Springer; 1983.

    Book  Google Scholar 

  29. Prüss J. Evolutionary integral equations and applications. Birkhäuser: Basel; 1993.

    Book  Google Scholar 

  30. Sakthivela R, Ren Y, Debbouchec A, Mahmudovd NI. Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions. Appl Anal 2016;95:2361–2382.

    Article  MathSciNet  Google Scholar 

  31. Tanabe H. Functional analytic methods for partial differential equations. New York: Marcel Dekker; 1997.

    MATH  Google Scholar 

  32. Wang RN, Ezzinbi K, Zhu PX. Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions. J Integral Equations Appl 2014; 26:275–299.

    Article  MathSciNet  Google Scholar 

  33. Wang RN, Zhu PX. Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions. Nonlinear Anal 2013;85:180–191.

    Article  MathSciNet  Google Scholar 

  34. Wang J, Fec̆kan M, Zhou Y. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evol Equ Control Theory 2017;6: 471–486.

    Article  MathSciNet  Google Scholar 

  35. Xiao TJ, Liang J. Existence of classical solutions to nonautonomous nonlocal parabolic problems. Nonlinear Anal 2005;63:225–232.

    Article  MathSciNet  Google Scholar 

  36. Zhou HX. Approximate controllability for a class of semilinear abstract equations. SIAM J Control Optim 1983;21:551–565.

    Article  MathSciNet  Google Scholar 

  37. Zhu B, Liu L, Wu Y. 2016. Existence and uniqueness of global mild solutions for a class of nonlinear fractional reactionCdiffusion equations with delay. Comput Math Appl. https://doi.org/10.1016/j.camwa.2016.01.028.

    Article  MathSciNet  Google Scholar 

  38. Zhu B, Liu L, Wu Y. Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay. Appl Math Lett 2016;61: 73–79.

    Article  MathSciNet  Google Scholar 

  39. Zhu B, Liu L, Wu Y. Local and global existence of mild solutions for a class of semilinear fractional integro-differential equations. Fract Calc Appl Anal 2017; 20:1338–1355.

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (No. 11501455), the National Natural Science Foundation of China (No. 11661071), and the Key Project of Gansu Provincial National Science Foundation (No. 1606RJZA015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyu Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhang, X. & Li, Y. Approximate Controllability of Non-autonomous Evolution System with Nonlocal Conditions. J Dyn Control Syst 26, 1–16 (2020). https://doi.org/10.1007/s10883-018-9423-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-018-9423-x

Keywords

Mathematics Subject Classification (2010)

Navigation