Skip to main content
Log in

Global Stabilization of the Navier-Stokes Equations Around an Unstable Steady State with Mixed Boundary Kinetic Energy Controller

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

The paper, benefiting from techniques developed in Ngom et al. (Evol Equ Control Theory. 2015;4:89–106), presents a mixed (Dirichlet-Neumann) boundary feedback controller for stabilizing the Navier-Stokes equations around a prescribed steady state, in a bounded domain \({\Omega }\). The Neumann part of the boundary controller is designed to be zero when the inflow vanishes, and to have the magnitude of the kinetic energy. Like in Ngom et al. (Evol Equ Control Theory. 2015;4:89–106), the present paper proves exponential decrease of the perturbation in \(L^{2}\), without blowup. In addition, it goes further than (Ngom et al., Evol Equ Control Theory. 2015;4:89–106) by proving, on the one hand, that the exponential convergence towards zero holds in \(H^{1}\), on the other hand, that the weak solution is unique when the computational domainis two-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Kucera P, Skalák Z. Local solutions to the Navier-Stokes equations with mixed boundary conditions. Acta Applicandae Mathematicae 1998;54:275–88.

    Article  MathSciNet  MATH  Google Scholar 

  2. Badra M, Takahashi T. Stabilization of parabolic nonlinear systems with finite-dimensional feedback or dynamical controllers: application to the Navier-Stokes system. SIAM J Control Optim 2011;49:420–63.

    Article  MathSciNet  MATH  Google Scholar 

  3. Badra M. Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system. ESAIM COCV 2009;15:934–68.

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbu V. Stabilization of Navier-Stokes equations by oblique boundary feedback controllers. SIAM J Control Optim 2012;50:2288–307.

    Article  MathSciNet  MATH  Google Scholar 

  5. Barbu V, Da Prato G. Internal stabilization by noise of the Navier-Stokes equations. SIAM J Control Optim 2011;49:1–20.

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbu V, Lasiecka I, Triggiani R. Local exponential stabilization strategies of the Navier-Stokes equations, d = 2, 3, via feedback stabilization of its linearization. Control of coupled partial differential equations, volume 155 of Internat. Ser. Numer. Math. Basel: Birkhaüser; 2007. p. 13–46.

  7. Barbu V, Lasiecka I, Triggiani R. Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers. Nonlinear Anal 2006;64:2704–746.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbu V, Lasiecka I, Triggiani R. Tangential boundary stabilization of Navier-Stokes equations. Mem Amer Math Soc 2006;852:1–145.

    MathSciNet  MATH  Google Scholar 

  9. Barbu V, Triggiani R. Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ Math J 2004;53:1443–494.

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbu V. Feedback stabilization of Navier-Stokes equations, ESAIM: control. Optim Calculus Var 2003;9:197–205.

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyer F, Fabrie P. Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. Mathématiques et Applications. Springer; 2006. vol. 52.

  12. Boyer F, Fabrie P, Vol. 183. Mathematical tools for the study of the incompressible Navier-Stokes equations and related models applied mathematical sciences. New York: Springer; 2013.

    MATH  Google Scholar 

  13. Diagne A, Sene A. Control of shallow water and sediment continuity coupled system. Math Control Signals Syst 2013;25:387–406.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernández Bonder J, Saintier N, Silva A. On the Sobolev trace Theorem for variable exponent spaces in the critical range. Annali di Matematica 2014;193:1607. https://doi.org/10.1007/s10231-013-0346-6.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fursikov AV. Stabilizability of two-dimensional Navier-Stokes equations with help of boundary feedback control. J Math Fluid Mech 2001;3:259–301.

    Article  MathSciNet  MATH  Google Scholar 

  16. Fursikov AV. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial differential equations and applications. Discret Cont Dyn Syst 2004;10: 289–314.

    Article  MATH  Google Scholar 

  17. Fursikov AV, Gunzburger M, Hou LS, Manservisi S. Optimal control for the Navier-Stokes equations. Lectures on applied mathematics. In: Bungartz H-J, Hoppe RHW, and Zenger C, editors. New York: Springer; 2000. p. 143–55.

  18. Goudiaby MS, Sene A, Kreiss G. A delayed feedback control for network of open canals. Int J Dynam Control 2013;1(4):316–29.

    Article  Google Scholar 

  19. Goudiaby MS, Sene A, Kreiss G. An algebraic approach for controlling cascade of reaches in irrigation canal. Types, Sources and Problems, InTech, pp. 369-90.

  20. Grandmont C, Maury B, Soualah A. Multiscale modelling of the respiratory tract: a theoretical framework. ESAIM: Proc 2008;23:10–29.

    Article  MATH  Google Scholar 

  21. He J-W, Glowinski R, Metcalfe R, Nordlander A, Periaux J. Active control and drag optimization for flow past a circular cylinder. J Comput Phys 2000;163: 83–117.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions JL. 2002. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod.

  23. Ngom EMD, Sène A, Le Roux DY. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evol Equ Control Theory 2014;3:147–66.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ngom EMD, Sène A, Le Roux DY. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evol Equ Control Theory 2015;4:89–106.

    Article  MathSciNet  MATH  Google Scholar 

  25. Park DS, Ladd DM, Hendricks EW. Feedback control of von Karman vortex shedding behind a circular cylinder at low Reynolds numbers. Phys Fluids 1994; 6:2390–405.

    Article  MATH  Google Scholar 

  26. Raymond J-P, Thevenet L. Boundary feedback stabilization of the two-dimensional Navier-Stokes equations with finite-dimensional controllers. Discret Cont Dyn Syst 2010;27:1159–87.

    Article  MathSciNet  MATH  Google Scholar 

  27. Raymond J-P. Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations. J Math Pures Appl 2007;87:627–69.

    Article  MathSciNet  MATH  Google Scholar 

  28. Raymond J-P. Feedback boundary stabilization of the two-dimensional Navier-Stokes equations. SIAM J Control Optim 2006;45:790–828.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sene A, Wane BA, Le Roux DY. Control of irrigation channels with variable bathymetry and time dependent stabilization rate. C R Acad Sci Paris Ser 2008;I(346): 1119–22.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the International Science Program, Uppsala, Sweden, and UMI-UMMISCO-IRD (Unité Mixte Internationale de Modélisation Mathématique et Informatique des Systèmes Complexes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdou Sène.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sène, A., Ngom, T. & Ngom, E.M.D. Global Stabilization of the Navier-Stokes Equations Around an Unstable Steady State with Mixed Boundary Kinetic Energy Controller. J Dyn Control Syst 25, 197–218 (2019). https://doi.org/10.1007/s10883-018-9406-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-018-9406-y

Keywords

Mathematics Subject Classification (2010)

Navigation