Skip to main content
Log in

First Variation of the Hausdorff Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We determine necessary conditions for a non-horizontal submanifold of a sub-Riemannian stratified Lie group to be of minimal measure. We calculate the first variation of the measure for a non-horizontal submanifold and find that the minimality condition implies the tensor equation H + σ = 0, where H is analogous to the mean curvature and σ is the mean torsion. We also discuss new examples of minimal non-horizontal submanifolds in the Heisenberg group, in particular surfaces in \(\mathbb {H}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellaïche A. The tangent space in sub-Riemannian geometry: Springer; 1996.

  2. Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and sub-Riemannian geometry. Preprint SISSA. 9. 2012.

  3. Agrachev A, Barilari D, Boscain U. On the Hausdorff volume in sub-Riemannian geometry. Calculus of Variations and Partial Differential Equations 2012;43:355–88.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gromov M. Carnot-carathéodory spaces seen from within, sub-Riemannian geometry. Progr Math 1996;144:79–323.

    MATH  Google Scholar 

  5. Harville DA. Matrix Algebra from a Statistician’s Perspective. New York: Springer; 1997.

    Book  MATH  Google Scholar 

  6. Ghezzi R, Jean F. Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds. Geometric control theory and sub-Riemannian geometry: Springer; 2014, pp. 201–18.

  7. Magnani V. Spherical Hausdorff measure of submanifolds in Heisenberg. Ricerche Mat. 2006;54:607–13.

    MathSciNet  MATH  Google Scholar 

  8. Mitchell J. On carnot-carathéodory metrics. J Differ Geom. 1985;21:35–45.

    Article  MATH  Google Scholar 

  9. Montefalcone F. Hypersurfaces and variational formulas in sub-Riemannian Carnot groups. Journal de Mathé,matiques Pures et Appliquées 2007;87:453–94.

    Article  MathSciNet  MATH  Google Scholar 

  10. Montefalcone F. Stable H-minimal hypersurfaces. J Geom Anal. 2012:1–51.

  11. Montgomery R. A tour of sub-Riemannian geometries, their geodesics and applications. American Mathematical Soc. 2006:91.

  12. Danielli D, Garofalo N, Nhieu DM. Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv Math. 2007;215:292–378.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kobayashi S, Nomizu K. Foundations of differential geometry, Vol 1. New York. 1963.

  14. Pansu P. 1982. Géométrie du groupe d’Heisenberg. PhD thesis.

  15. Hladky R, Pauls SD. Variation of perimeter measure in sub-Riemannian geometry. Int Electron J Geom. 2013;6:8–40.

    MathSciNet  MATH  Google Scholar 

  16. Barilari D, Rizzi L. A formula for popp’s volume in sub-Riemannian geometry. Analysis and Geometry in Metric Spaces 2013;1:42–57.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hurtado A, Ritoré M, Rosales C. The classification of complete stable area-stationary surfaces in the Heisenberg group \(\mathbb {H}^{1}\). Adv Math. 2010;224:561–600.

  18. Ritoré M, Rosales C. Area-stationary surfaces in the Heisenberg group \(\mathbb {H}^{1}\). Adv Math. 2008;219:633–71.

  19. Spivak M. A Comprehensive Introduction to Differential Geometry, Vol. IV, 2nd ed. Wilmington Del: Publish or Perish, Inc.; 1979.

  20. Strichartz RS. Corrections to: “Sub-riemannian geometry”. J Differential Geom. 1989;30:595–96.

    Article  MathSciNet  Google Scholar 

  21. Strichartz RS. Sub-Riemannian geometry. J Differential Geom. 1986;24:221–63.

    Article  MathSciNet  MATH  Google Scholar 

  22. Diniz MM, Veloso JM. Regions where the exponential map at regular points of sub-Riemannian manifolds is a local diffeomorphism. J Dyn Control Syst 2009;15:133–56.

    Article  MathSciNet  MATH  Google Scholar 

  23. Diniz MM, Veloso JM. Gauss-Bonnet Theorem in Sub-Riemannian Heisenberg space \(\mathbb {H}^{1}\). arXiv:1210.7110[math.DG].

  24. Magnani V, Vittone D. An intrinsic measure for submanifolds in stratified groups. J Reine Angew Math. 2008;619:203–32.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria R. B. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, M.M., Santos, M.R.B. & Veloso, J.M.M. First Variation of the Hausdorff Measure of Non-horizontal Submanifolds in Sub-Riemannian Stratified Lie Groups. J Dyn Control Syst 23, 509–533 (2017). https://doi.org/10.1007/s10883-016-9339-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-016-9339-2

Keywords

Mathematics Subject Classification (2010)

Navigation