Skip to main content
Log in

On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We consider the left-invariant sub-Riemannian and Riemannian structures on the Heisenberg groups. A classification of these structures was found previously. In the present paper, we find (for each normalized structure) the isometry group, the exponential map, the totally geodesic subgroups, and the conjugate locus. Finally, we determine the minimizing geodesics from identity to any given endpoint. (Several of these points have been covered, to varying degrees, by other authors.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agrachev A, Barilari D. Sub-Riemannian structures on 3D Lie groups. J Dyn Control Syst 2012;18(1):21–44. doi:10.1007/s10883-012-9133-8.

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev A, Barilari D, Boscain U. Introduction to Riemannian and sub-Riemannian geometry. http://webusers.imj-prg.fr/~davide.barilari/Notes.php. Preprint SISSA 09/2012/M.

  3. Agrachev A, Barilari D, Boscain U. On the Hausdorff volume in sub-Riemannian geometry. Calc Var Partial Differential Equations 2012;43(3-4):355–88. doi:10.1007/s00526-011-0414-y.

    Article  MathSciNet  MATH  Google Scholar 

  4. Agrachev AA. Exponential mappings for contact sub-Riemannian structures. J Dynam Control Systems 1996;2(3):321–58. doi:10.1007/BF02269423.

    Article  MathSciNet  MATH  Google Scholar 

  5. Agrachev AA, Gamkrelidze RV. Feedback-invariant optimal control theory and differential geometry. I. Regular extremals. J Dyn Control Syst 1997;3(3):343–89. doi:10.1007/BF02463256.

    Article  MathSciNet  MATH  Google Scholar 

  6. Agrachev AA, Sachkov YuL. Control theory from the geometric viewpoint. Berlin: Springer; 2004. doi:10.1007/978-3-662-06404-7.

    Book  MATH  Google Scholar 

  7. Alcheikh M, Orro P, Pelletier F. Characterizations of Hamiltonian geodesics in sub-Riemannian geometry. J Dyn Control Syst 1997;3(3):391–418. doi:10.1007/BF02463257.

    Article  MathSciNet  MATH  Google Scholar 

  8. Almeida DM. Sub-Riemannian homogeneous spaces of Engel type. J Dyn Control Syst 2014;20(2):149–66. doi:10.1007/s10883-013-9194-3.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ambrosio L, Rigot S. Optimal mass transportation in the Heisenberg group. J Funct Anal 2004;208(2):261–301. doi:10.1016/S0022-1236(03)00019-3.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ardentov AA, Sachkov YuL. Extremal trajectories in the nilpotent sub-Riemannian problem on the Engel group. Mat Sb 2011;202(11):31–54. doi:10.1070/SM2011v202n11ABEH004200.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ardentov AA, Sachkov YuL. Conjugate points in nilpotent sub-Riemannian problem on the Engel group. J Math Sci (N Y) 2013;195(3):369–90. doi:10.1007/s10958-013-1584-2. Translation of Sovrem. Mat. Prilozh. No. 82 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. Beals R, Gaveau B, Greiner PC. Hamilton–Jacobi theory and the heat kernel on Heisenberg groups. J Math Pures Appl 2000;79(7):633–89. doi:10.1016/S0021-7824(00)00169-0.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bellaïche A. The tangent space in sub-Riemannian geometry. In: Bellaïche A and Risler JJ, editors. Sub-Riemannian geometry, pp 1–78. Basel: Birkhäuser; 1996, 10.1007/978-3-0348-9210-0_1.

  14. Berndt J, Tricerri F, Vanhecke L. Generalized Heisenberg groups and Damek-Ricci harmonic spaces Lecture Notes in Mathematics, vol 1598. Berlin: Springer; 1995.

    MATH  Google Scholar 

  15. Biggs R, Nagy PT. On extensions of sub-Riemannian structures on Lie groups. Differential Geom Appl 2016;46:25–38. doi:10.1016/j.difgeo.2016.02.001.

    Article  MathSciNet  MATH  Google Scholar 

  16. Biggs R, Nagy PT. A classification of sub-Riemannian structures on the Heisenberg groups. Acta Polytech Hungar 2013;10(7):41–52. doi:10.12700/APH.10.07.2013.7.4.

    Google Scholar 

  17. Biggs R, Remsing CC. On the equivalence of cost-extended control systems on Lie groups. In: Karimi HR, editors. Recent researches in automatic control, systems science and communications, Porto, Portugal, 2012, pp 60–65. WSEAS Press; 2012.

  18. Boscain U, Rossi F. Invariant Carnot–Caratheodory metrics on S3,SO(3),SL(2), and lens spaces. SIAM J Control Optim 2008; 47 (4): 1851–78. doi:10.1137/070703727.

    Article  MathSciNet  MATH  Google Scholar 

  19. Butt YA, Sachkov YuL, Bhatti AI. Extremal trajectories and Maxwell strata in sub-Riemannian problem on group of motions of pseudo-Euclidean plane. J Dyn Control Syst 2014;20(3):341–64. doi:10.1007/s10883-014-9239-2.

    Article  MathSciNet  MATH  Google Scholar 

  20. Calin O, Chang DC. Sub-Riemannian geometry. Cambridge: Cambridge University Press; 2009. doi:10.1017/CBO9781139195966.

    Book  MATH  Google Scholar 

  21. Calin O, Chang DC, Greiner P. Geometric analysis on the Heisenberg group and its generalizations. American Mathematical Society, Providence, RI. Somerville: International Press; 2007.

    Google Scholar 

  22. Capogna L, Le Donne E. Smoothness of subRiemannian isometries (arXiv:1305.5286).

  23. Cowling M, Dooley A, Korányi A, Ricci F. An approach to symmetric spaces of rank one via groups of Heisenberg type. J Geom Anal 1998;8(2): 199–237. doi:10.1007/BF02921641.

    Article  MathSciNet  MATH  Google Scholar 

  24. Eberlein P. Geometry of 2-step nilpotent groups with a left invariant metric. Ann Sci École Norm Sup 1994;27(5):611–60. http://www.numdam.org/item?id=ASENS_1994_4_27_5_611_0.

    MathSciNet  MATH  Google Scholar 

  25. Eberlein P. Geometry of 2-step nilpotent groups with a left invariant metric. II. Trans Amer Math Soc 1994;343(2):805–28. doi:10.2307/2154743.

    MathSciNet  MATH  Google Scholar 

  26. Eberlein P. Geometry of 2-step nilpotent Lie groups. Modern dynamical systems and applications. Cambridge: Cambridge University Press; 2004. p. 67–101.

  27. Falbel E, Gorodski C. Sub-Riemannian homogeneous spaces in dimensions 3 and 4. Geom Dedicata 1996;62(3):227–52. doi:10.1007/BF00181566.

    Article  MathSciNet  MATH  Google Scholar 

  28. Gorbatsevich VV, Onishchik AL, Vinberg EB. Foundations of Lie theory and Lie transformation groups. Berlin: Springer; 1997.

    MATH  Google Scholar 

  29. Gordon C. Isospectral closed Riemannian manifolds which are not locally isometric. J Differential Geom 1993;37(3):639–49. http://projecteuclid.org/euclid.jdg/1214453902.

    MathSciNet  MATH  Google Scholar 

  30. Ha KY, Lee JB. Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math Nachr 2009;282(6):868–98. doi:10.1002/mana.200610777.

    Article  MathSciNet  MATH  Google Scholar 

  31. Hamenstädt U. Some regularity theorems for Carnot–Carathéodory metrics. J Differential Geom 1990;32(3):819–50.

    MathSciNet  MATH  Google Scholar 

  32. Homolya Sz, Nagy PT. Submersions on nilmanifolds and their geodesics. Publ Math Debrecen 2003;62(3-4):415–28.

    MathSciNet  MATH  Google Scholar 

  33. Jurdjevic V. Geometric control theory. Cambridge: Cambridge University Press; 1997.

    MATH  Google Scholar 

  34. Kaplan A. Riemannian nilmanifolds attached to Clifford modules. Geom Dedicata 1981;11(2):127–36. doi:10.1007/BF00147615.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kaplan A. On the geometry of groups of Heisenberg type. Bull London Math Soc 1983;15(1):35–42. doi:10.1112/blms/15.1.35.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kishimoto I. Geodesics and isometries of Carnot groups. J Math Kyoto Univ 2003; 43(3):509–22.

    MathSciNet  MATH  Google Scholar 

  37. Korányi A. Geometric properties of Heisenberg-type groups. Adv Math 1985;56 (1):28–38. doi:10.1016/0001-8708(85)90083-0.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lauret J. Homogeneous nilmanifolds of dimensions 3 and 4. Geom Dedicata 1997; 68(2):145–55. doi:10.1023/A:1004936725971.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lauret J. Homogeneous nilmanifolds attached to representations of compact Lie groups. Manuscripta Math 1999;99(3):287–309. doi:10.1007/s002290050174.

    Article  MathSciNet  MATH  Google Scholar 

  40. Lauret J. Modified H-type groups and symmetric-like Riemannian spaces. Differential Geom Appl 1999;10(2):121–43. doi:10.1016/S0926-2245(99)00002-9.

    Article  MathSciNet  MATH  Google Scholar 

  41. Lauret J. Einstein solvmanifolds and nilsolitons. New developments in Lie theory and geometry, Contemp. Math., vol 491, pp 1–35. Providence: Amer. Math. Soc.; 2009, 10.1090/conm/491/09607.

  42. Marenich V. Geodesics in Heisenberg groups. Geom Dedicata 1997;66(2):175–85. doi:10.1023/A:1004916117293.

    Article  MathSciNet  MATH  Google Scholar 

  43. Marsden JE, Ratiu TS. Introduction to mechanics and symmetry. New York: Springer; 1994.

    Book  MATH  Google Scholar 

  44. Mazhitova AD. Sub-riemannian geodesics on the three-dimensional solvable non-nilpotent Lie group SOLV. J Dyn Control Syst 2012;18(3):309–22. doi:10.1007/s10883-012-9145-4.

    Article  MathSciNet  MATH  Google Scholar 

  45. Milnor J. Curvatures of left invariant metrics on Lie groups. Advances in Math 1976;21(3):293–329. doi:10.1016/S0001-8708(76)80002-3.

    Article  MathSciNet  MATH  Google Scholar 

  46. Moiseev I, Sachkov YuL. Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim Calc Var 2010;16(2):380–99. doi:10.1051/cocv/2009004.

    Article  MathSciNet  MATH  Google Scholar 

  47. Monroy-Pérez F, Anzaldo-Meneses A. Optimal control on the Heisenberg group. J Dyn Control Syst 1999;5(4):473–99. doi:10.1023/A:1021787121457.

    Article  MathSciNet  MATH  Google Scholar 

  48. Monroy-Pérez F, Anzaldo-Meneses A. Optimal control on nilpotent Lie groups. J Dyn Control Syst 2002;8(4):487–504. doi:10.1023/A:1020711301924.

    Article  MathSciNet  MATH  Google Scholar 

  49. Montgomery R. 2002. A tour of subriemannian geometries, their geodesics and applications: American Mathematical Society, Providence.

  50. Monti R. Some properties of Carnot–Carathéodory balls in the Heisenberg group. Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 2000;11(3):155–67.

    MathSciNet  MATH  Google Scholar 

  51. Nagy PT, Homolya Sz. Geodesic vectors and subalgebras in two-step nilpotent metric Lie algebras. Adv Geom 2015;15(1):121–6. doi:10.1515/advgeom-2014-0028.

    Article  MathSciNet  MATH  Google Scholar 

  52. Petersen P. Riemannian geometry, 2nd edn. New York: Springer; 2006.

    MATH  Google Scholar 

  53. Saal L. The automorphism group of a Lie algebra of Heisenberg type. Rend Sem Mat Univ Politec Torino 1996;54(2):101–13.

    MathSciNet  MATH  Google Scholar 

  54. Sachkov YuL. Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim Calc Var 2010;16(4):1018–39. doi:10.1051/cocv/2009031.

    Article  MathSciNet  MATH  Google Scholar 

  55. Sachkov YuL. Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM Control Optim Calc Var 2011;17(2):293–321. doi:10.1051/cocv/2010005.

    Article  MathSciNet  MATH  Google Scholar 

  56. Strichartz RS. Sub-Riemannian geometry. J Differential Geom 1986;24(2):221–63. http://projecteuclid.org/euclid.jdg/1214440436.

    MathSciNet  MATH  Google Scholar 

  57. Tan KH, Yang XP. Characterisation of the sub-Riemannian isometry groups of H-type groups. Bull Austral Math Soc 2004;70(1):87–100. doi:10.1017/S000497270003584X.

    Article  MathSciNet  MATH  Google Scholar 

  58. Vershik AM, Gershkovich VY. Nonholonomic problems and the theory of distributions. Acta Appl Math 1988;12(2):181–209. doi:10.1007/BF00047498.

    Article  MathSciNet  MATH  Google Scholar 

  59. Vershik AM, Gershkovich VY. Nonholonomic dynamical systems, geometry of distributions and variational problems. In: Arnol’d VI and Novikov SP, editors. Dynamical systems VII. Berlin: Springer; 1994. p. 1–81. doi:10.1007/978-3-662-06796-3.

    Google Scholar 

  60. Vukmirović S. Classification of left-invariant metrics on the Heisenberg group. J Geom Phys 2015;94:72–80. doi:10.1016/j.geomphys.2015.01.005.

    Article  MathSciNet  MATH  Google Scholar 

  61. Walschap G. Cut and conjugate loci in two-step nilpotent Lie groups. J Geom Anal 1997;7(2):343–55. doi:10.1007/BF02921727.

    Article  MathSciNet  MATH  Google Scholar 

  62. Wilson EN. Isometry groups on homogeneous nilmanifolds. Geom Dedicata 1982; 12(3):337–46. doi:10.1007/BF00147318.

    Article  MathSciNet  MATH  Google Scholar 

  63. Wolf JA. Curvature in nilpotent Lie groups. Proc Amer Math Soc 1964;15:271–4.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory Biggs.

Additional information

The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 317721. The first author is primarily funded by the Claude Leon Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biggs, R., Nagy, P.T. On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups. J Dyn Control Syst 22, 563–594 (2016). https://doi.org/10.1007/s10883-016-9316-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-016-9316-9

Keywords

Mathematics Subject Classification (2010)

Navigation