Skip to main content
Log in

Quenching Phenomenon of a Singular Semilinear Parabolic Problem

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

This paper concerns the second initial boundary value problem of a multidimensional singular semilinear parabolic equation. It is shown that the solution must quench in a finite time and the quenching set is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acker A, Walter W. The quenching problem for nonlinear parabolic equations. In: Lecture notes in mathematics. New York: Springer-Verlag; 1976. p. 564.

  2. Boni T. On quenching of solutions for some semilinear parabolic equations of second order. Bull Belg Math Soc Simon Stevin. 2000;7(1):73–95.

    MATH  MathSciNet  Google Scholar 

  3. Chan CY, Kong PC. Quenching for degenerate semilinear parabolic equations. Appl Anal. 1994;54:17–25.

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan WY. Quenching of the solution for a degenerate semilinear parabolic equation. Neural Parallel Sci Comput. 2008;16:237–252.

    MATH  MathSciNet  Google Scholar 

  5. Chan WY. Quenching for nonlinear degenerate parabolic problems. J Comput Appl Math. 2011;235(13):3831–3840.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chan CY, Liu HT. Quenching for degenerate parabolic problems with nonlocal boundary conditions. Dynam Syst Appl. 2009;18:17–28.

    MATH  MathSciNet  Google Scholar 

  7. Chan CY, Liu HT. Does quenching for degenerate parabolic equations occur at the boundaries? Advances in quenching. Dyn Contin Discret Impuls Syst Ser A Math Anal. 2001;8:121–128.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan CY, Jiang XO. Quenching for a degenerate parabolic problem due to a concentrated nonlinear source. Q Appl Math. 2004;62:553–568.

    MATH  MathSciNet  Google Scholar 

  9. Dai Q, Gu Y. A short note on quenching phenomena for semilinear parabolic equations. J Diff Equ 1997;137:240–250.

    Article  MATH  MathSciNet  Google Scholar 

  10. Deng K, Levine HA. On the blow up of u t at quenching. Proc Amer Math Soc. 1989;106(4):1049–1056.

    MATH  MathSciNet  Google Scholar 

  11. Dyakevich NE. Exietence, uniqueness quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions. J Math Anal Appl. 2008;338:892–901.

    Article  MATH  MathSciNet  Google Scholar 

  12. Floater MS. Blow-up at the boundary for degenerate semilinear parabolic equations. Arch Ration Mech Anal. 1991;114:57–77.

    Article  MATH  MathSciNet  Google Scholar 

  13. Guo J S, Hu B. The profile near quenching time for the solution of a singular semilinear heat equation. Proc Edinburgh Math Soc. 1997;40:437–456.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kawarada H. On solutions of initial-boundary problem for \(u_{t}=u_{xx}+\frac {1}{1-u}\). Publ RIMS Kyoto Univ. 1975;10:729–736.

    Article  MATH  MathSciNet  Google Scholar 

  15. Ke L, Ning S. Quenching for degenerate parabolic problems. Nonlinear Anal. 1998;34:1123–1135.

    Article  MATH  MathSciNet  Google Scholar 

  16. Kirk CM, Roberts CA. A review of quenching results in the context of nonlinear Volterra equations, second international conference on dynamics of continuous, discrete and impulsive systems (London, ON). Dyn Contin Discret Impuls Syst Ser A Math Anal. 2001;10(2003):343–356.

    MathSciNet  Google Scholar 

  17. Lacey AA. The form of blow-up for nonlinear parabolic equations. Proc Roy Soc Edinburgh Sect A. 1984;98:183–202.

    Article  MATH  MathSciNet  Google Scholar 

  18. Levine HA. The quenching of solutions of linear hyperbolic and parabolic with nonlinear boundary conditions. SIAM J Math Anal. 1983;14:1139–1153.

    Article  MATH  MathSciNet  Google Scholar 

  19. Levine HA. The phenomenon of quenching: a survey trends in the theory and practice of nonlinear analysis (Arlington, Tex., 1984), 275–286, North-Holland Math. Stud. North-Holland, Amsterdam; 1985. p. 110.

  20. Levine HA. Quenching, nonquenching, and beyond quenching for solution of some parabolic equations. Annali di Matematica pura ed applicata (IV), CLV. 1989:243–260.

  21. Levine HA, Lieberman GM. Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions. J Reine Ang Math. 1983; 345:23–38.

    MATH  MathSciNet  Google Scholar 

  22. Levine HA, Montgomery JT. Quenching of solutions of some nonlinear parabolic problems. SIAM J Math Anal. 1980;11:842–847.

    Article  MATH  MathSciNet  Google Scholar 

  23. Stuart AM, Floater MS. On the computation of blow-up, European. J Appl Math. 1990;1:47–71.

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the referees for their helpful comments on the original version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Zhou, Q., Zhou, M. et al. Quenching Phenomenon of a Singular Semilinear Parabolic Problem. J Dyn Control Syst 21, 81–93 (2015). https://doi.org/10.1007/s10883-014-9223-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-014-9223-x

Keywords

Mathematics Subject Classifications (2010)

Navigation