Skip to main content
Log in

Online bin packing with (1,1) and (2,\(R\)) bins

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

We study a variant of online bin packing problem, in which there are two types of bins: \((1,1)\) and \((2,R)\), i.e., unit size bin with cost 1 and size 2 bin with cost \(R > 1\), the objective is to minimize the total cost occurred when all the items are packed into the two types of bins. When \(R > 3\), the offline version of this problem is equivalent to the classical bin packing problem. In this paper, we focus on the case \( R \le 3\), and propose online algorithms and obtain lower bounds for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balogh J, Békési J (2013) Semi-on-line bin packing: a short overview and a new lower bound. Cent Eur J Oper Res 21:685–698

    Article  Google Scholar 

  • Balogh J, Békési J, Galambos G, Reinelt G (2014) Online bin packing with restricted repacking. J Comb Optim 27:115–131

    Article  MATH  MathSciNet  Google Scholar 

  • Brown DJ (1979) A lower bound for on-line one-dimensional bin packing algorithms. Tech report -864. Coordinated Science Laboratory, Urbana, IL

  • Coffman EG, Garey MR, Johnson DS (1997) Approximation algorithms for bin packing: a survey. In: Hochbaum D (ed) Approximation algorithms. PWS Publishing Company, Boston, MA

    Google Scholar 

  • Csirik J (1989) An on-line algorithm for variable-sized bin packing. Acta Inf 26(8):697–709

    Article  MATH  MathSciNet  Google Scholar 

  • Epstein L, Levin A (2008) An APTAS for generalized cost variable-sized bin packing. SIAM J Comput 38(1):411–428

    Article  MATH  MathSciNet  Google Scholar 

  • Friesten DK, Langston MA (1986) Variable sized bin packing. SIAM J Comput 15:222–230

    Article  Google Scholar 

  • Johnson DS (1974) Fast algorithm for bin packing. J Comput Syst Sci 8:272–314

    Article  MATH  Google Scholar 

  • Johnson DS, Demers A, Ullman JD, Garey MR, Graham RL (1974) Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J Comput 3:256–278

    Article  MathSciNet  Google Scholar 

  • Kinnerseley NG, Langston MA (1988) Online variable-sized bin packing. Discret Appl Math 22(2):143–148

    Article  Google Scholar 

  • Lee CC, Lee DT (1985) A simple on-line bin packing algorithm. JACM 32(3):256–278

    Article  Google Scholar 

  • Liang FM (1980) A lower bound for on-line bin packing. Inf Process Lett 10:76–79

    Article  MATH  Google Scholar 

  • Seiden SS (2002) On the online bin packing problem. JACM 49:640–671

    Article  MathSciNet  Google Scholar 

  • Seiden SS, Van Stee R, Epstein L (2002) New bounds for variable-sized online bin packing. SIAM J Comput 32(2):455–469

    Article  Google Scholar 

  • Ullman JD (1971) The performance of a memory allocation algorithm. Technical Report 100, Princeton University, Princeton, NJ

  • Van Vliet A (1992) An improved lower bound for online bin packing algorithm. Inf Process Lett 43:277–284

    Article  MATH  Google Scholar 

  • Yao ACC (1980) New algorithms for bin packing. JACM 27:207–227

    Article  MATH  Google Scholar 

  • Zhang Y, Chin FYL, Ting H, Han X (2013) Online algorithms for 1-space bounded multi dimensional bin packing and hypercube packing. J Comb Optim 26(2):223–236

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Partially supported by NSFC(11101065), LJQ2012003, RGC(HKU716412E) and “the Fundamental Research Funds for the Central Universities”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Han.

Appendix

Appendix

In the following, we use \([p_1, p_2, p_3, p_4]\) to denote a dominant pattern of size 2 bin, where the number of items with size \(s_i\) is \(p_i\). And we use \((p_1, p_2, p_3, p_4)\) to denote a dominant pattern of a unit bin, where the number of items with size \(s_i\) is \(p_i\).

1.1 Dominant patterns of Greedy sequence

Dominant patterns for size two bin: [84,0,0,0], [78,1,0,0], [72,2,0,0], [66,3,0,0], [60,4,0,0], [54,5,0,0], [48,6,0,0], [42,7,0,0], [36,8,0,0], [30,9,0,0], [24,10,0,0], [18,11,0,0], [12,12,0,0], [6,13,0,0], [70,0,1,0], [64,1,1,0], [58,2,1,0], [52,3,1,0], [46,4,1,0], [40,5,1,0], [34,6,1,0], [28,7,1,0], [22,8,1,0], [16,9,1,0], [10,10,1,0], [4,11,1,0], [56, 0,2,0], [50,1,2,0], [44,2,2,0], [38,3,2,0], [32,4,2,0], [26,5,2,0], [20,6,2,0], [14,7,2,0], [8,8,2,0], [1,9,2,0], [42,0,3,0], [36,1,3,0], [30,2,3,0], [24,3,3,0, ], [18,4,3,0], [12,5,3,0], [6,6,3,0], [28,0,4,0], [22,1,4,0], [16,2,4,0], [10,3,4,0], [4,4,4,0], [14,0,5,0], [8,1,5,0], [1,2,5,0], [63,0,0,1], [57,1,0,1], [51,2, 0,1], [45,3,0,1], [39,4,0,1], [33,5,0,1], [27,6,0,1], [21,7,0,1], [15,8,0,1], [9,9,0,1], [2,10,0,1], [49,0,1,1], [43,1,1,1], [37,2,1,1], [31,3,1,1], [25,4,1,1], [19,5,1,1], [13,6,1,1], [7,7,1,1], [0,8,1,1], [35,0,2,1], [29,1,2,1], [23,2,2,1], [17,3,2,1], [11,4,2,1], [5,5,2,1], [21,0,3,1], [15,1,3,1], [9,2,3,1], [3,3,3,1], [7,0,4,1], [0,1,4,1], [42,0,0,2], [36,1,0,2], [30,2,0,2], [24,3,0,2], [18,4,0,2], [12,5,0,2], [6,6,0,2], [28,0,1,2], [22,1,1,2], [16,2,1,2], [10,3,1,2], [4,4, 1,2], [14,0,2,2], [8,1,2,2], [2,2,2,2], [21,0,0,3], [15,1,0,3], [9,2,0,3], [3,3,0,3], [7,0,1,3], [0,1,1,3], [0,13,0,0], [0,11,1,0], [0,9,2,0], [0,6,3,0], [0,4,4, 0], [0,2,5,0], [0,10,0,1], [0,8,1,1], [0,5,2,1], [0,3,3,1], [0,1,4,1], [0,6,0,2], [0,4,1,2], [0,2,2,2], [0,3,0,3], [0,1,1,3], [0,0,5,0], [0,0,4,1], [0,0,2,2], [0,0,1,3], [0,0,0,3]

Dominant patterns for a unit bin:

(42,0,0,0), (36,1,0,0), (30,2,0,0), (24,3,0,0), (18,4,0,0), (12,5,0,0), (6,6,0,0), (28,0,1,0), (22,1,1,0), (16,2,1,0), (10,3,1,0), (4,4,1,0), (14,0,2,0), (8,1, 2,0), (2,2,2,0), (21,0,0,1), (15,1,0,1), (9,2,0,1), (3,3,0,1), (7,0,1,1), (1,1,1,1), (0,6,0,0), (0,4,1,0), (0,2,2,0), (0,3,0,1), (0,1,1,1), (0,0,2,0), (0,0,1,1), (0,0,0,1)

1.2 Dominant patterns of Parametric sequence

Dominant patterns for size two bin: [156,0,0,0], [144,1,0,0], [132,2,0,0], [120,3,0,0], [108,4,0,0], [96,5,0,0], [84,6,0,0], [72,7,0,0], [60,8,0,0], [48,9,0,0], [36,10,0,0], [24,11,0,0], [12,12,0, 0], [117,0,1,0], [105,1,1,0], [93,2,1,0], [81,3,1,0], [69,4,1,0], [57,5,1,0], [45,6,1,0], [33,7,1,0], [21,8,1,0], [9,9,1,0], [78,0,2,0], [66,1,2,0], [54,2,2,0], [42,3,2,0], [30,4,2,0], [18,5,2,0], [6,6,2,0], [39,0,3,0], [27,1,3,0], [15,2,3,0], [3,3,3,0], [104,0,0,1], [92,1,0,1], [80,2,0,1], [68,3,0,1], [56,4,0,1], [44,5, 0,1], [32,6,0,1], [20,7,0,1], [8,8,0,1], [65,0,1,1], [53,1,1,1], [41,2,1,1], [29,3,1,1], [17,4,1,1], [5,5,1,1], [26,0,2,1], [14,1,2,1], [2,2,2,1], [52,0,0,2], [40,1,0,2], [28,2,0,2], [16,3,0,2], [4,4,0,2], [13,0,1,2], [0,1,1,2], [0,12,0,0], [0,9,1,0], [0,6,2,0], [0,3,3,0], [0,8,0,1], [0,5,1,1], [0,2,2,1], [0,4,0,2], [0,1,1,2], [0,0,3,0], [0,0,2,1], [0,0,1,2], [0,0,0,2]

Dominant patterns for a unit bin:

(78,0,0,0), (66,1,0,0), (54,2,0,0), (42,3,0,0), (30,4,0,0), (18,5,0,0), (6,6,0,0), (39,0,1,0), (27,1,1,0), (15,2,1,0), (3,3,1,0), (26,0,0,1), (14,1,0,1), (2,2, 0,1), (0,6,0,0), (0,3,1,0), (0,2,0,1), (0,0,1,0), (0,0,0,1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Han, X., Iwama, K. et al. Online bin packing with (1,1) and (2,\(R\)) bins. J Comb Optim 30, 276–298 (2015). https://doi.org/10.1007/s10878-014-9749-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-014-9749-6

Keywords

Navigation